Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia.
Bioconjug Chem. 2021 Nov 17;32(11):2407-2419. doi: 10.1021/acs.bioconjchem.1c00452. Epub 2021 Nov 9.
Double-knotted peptides identified in venoms and synthetic bivalent peptide constructs targeting ion channels are emerging tools for the study of ion channel pharmacology and physiology. These highly complex and disulfide-rich peptides contain two individual cystine knots, each comprising six cysteines and three disulfide bonds. Until now, native double-knotted peptides, such as Hi1a and DkTx, have only been isolated from venom or produced recombinantly, whereas engineered double-knotted peptides have successfully been produced through enzymatic ligation using sortase A to form a seamless amide bond at the ligation site between two knotted toxins, and by alkyne/azide click chemistry, joining two peptide knots via a triazole linkage. To further pursue these double-knotted peptides as pharmacological tools or probes for therapeutically relevant ion channels, we sought to identify a robust methodology resulting in a high yield product that lends itself to rapid production and facile mutational studies. In this study, we evaluated the ligation efficiency of enzymatic (sortase A5°, butelase 1, wild-type OaAEP 1, C247A-OaAEP 1, and peptiligase) and mild chemical approaches (α-ketoacid-hydroxylamine, KAHA) for forming a native amide bond linking the toxins while maintaining the native disulfide connectivity of each pre-folded peptide. We used two Na1.7 inhibitors: PaurTx3, a spider-derived gating modifier peptide, and KIIIA, a small cone snail-derived pore blocker peptide, which have previously been shown to increase affinity and inhibitory potency on hNa1.7 when ligated together. Correctly folded peptides were successfully ligated in varying yields, without disulfide bond shuffling or reduction, with sortase A5° being the most efficient, resulting in 60% ligation conversion within 15 min. In addition, electrophysiology studies demonstrated that for these two peptides, the amino acid composition of the linker did not affect the activity of the double-knotted peptides. This study demonstrates the powerful application of enzymes in efficiently ligating complex disulfide-rich peptides, paving the way for facile production of double-knotted peptides.
双环肽在毒液和针对离子通道的合成二价肽构建体中被发现,是研究离子通道药理学和生理学的新兴工具。这些高度复杂和富含二硫键的肽包含两个单独的半胱氨酸环,每个环由六个半胱氨酸和三个二硫键组成。到目前为止,只有从毒液中分离出天然的双环肽,如 Hi1a 和 DkTx,或者通过重组生产,而通过使用 sortase A 进行酶促连接,在两个环毒素之间的连接点形成无缝酰胺键,以及通过炔基/叠氮点击化学,通过三唑键连接两个肽环,成功地生产了工程化的双环肽。为了进一步将这些双环肽作为治疗相关离子通道的药理学工具或探针,我们试图寻找一种稳健的方法,以获得高产率的产物,使其能够快速生产和易于进行突变研究。在这项研究中,我们评估了酶促(sortase A5°,butelase 1,野生型 OaAEP 1,C247A-OaAEP 1 和 peptiligase)和温和化学方法(α-酮酸-羟胺,KAHA)在形成连接毒素的天然酰胺键的同时保持每个预折叠肽的天然二硫键连接的连接效率。我们使用了两种 Na1.7 抑制剂:PaurTx3,一种源自蜘蛛的门控修饰肽,和 KIIIA,一种源自小锥螺的孔阻塞肽,当它们连接在一起时,先前已显示出增加对 hNa1.7 的亲和力和抑制效力。成功地以不同的产率连接了正确折叠的肽,没有二硫键重排或还原,sortase A5°是最有效的,在 15 分钟内转化率达到 60%。此外,电生理学研究表明,对于这两种肽,连接子的氨基酸组成不影响双环肽的活性。这项研究证明了酶在有效连接复杂富含二硫键的肽方面的强大应用,为双环肽的简便生产铺平了道路。