Department of Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
Department of Nuclear Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
BMC Nephrol. 2021 Nov 9;22(1):372. doi: 10.1186/s12882-021-02595-5.
To assess the clinical practicability of the ensemble learning model established by Liu et al. in estimating glomerular filtration rate (GFR) and validate whether it is a better model than the Asian modified Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation in a cohort of Chinese chronic kidney disease (CKD) patients in an external validation study.
According to the ensemble learning model and the Asian modified CKD-EPI equation, we calculated estimated GFR and GFR, separately. Diagnostic performance of the two models was assessed and compared by correlation coefficient, regression equation, Bland-Altman analysis, bias, precision and P under the premise of Tc-diethylenetriaminepentaacetic acid (Tc-DTPA) dual plasma sample clearance method as reference method for GFR measurement (mGFR).
A total of 158 Chinese CKD patients were included in our external validation study. The GFR was highly related with mGFR, with the correlation coefficient of 0.94. However, regression equation of GFR = 0.66*mGFR + 23.05, the regression coefficient was far away from one, and the intercept was wide. Compared with the Asian modified CKD-EPI equation, the diagnostic performance of the ensemble learning model also demonstrated a wider 95% limit of agreement in Bland-Altman analysis (52.6 vs 42.4 ml/min/1.73 m), a poorer bias (8.0 vs 1.0 ml/min/1.73 m, P = 0.02), an inferior precision (18.4 vs 12.7 ml/min/1.73 m, P < 0.001) and a lower P (58.9% vs 74.1%, P < 0.001).
Our study showed that the ensemble learning model cannot replace the Asian modified CKD-EPI equation for the first choice for GFR estimation in overall Chinese CKD patients.
评估 Liu 等人建立的集成学习模型在估计肾小球滤过率(GFR)方面的临床实用性,并在一项中国慢性肾脏病(CKD)患者的外部验证研究中验证其是否优于亚洲改良慢性肾脏病流行病学合作(CKD-EPI)方程。
根据集成学习模型和亚洲改良 CKD-EPI 方程,分别计算估计的 GFR 和 GFR。在 Tc-二乙三胺五乙酸(Tc-DTPA)双血浆样本清除法作为 GFR 测量的参考方法(mGFR)的前提下,通过相关系数、回归方程、Bland-Altman 分析、偏倚、精度和 P 评估和比较两种模型的诊断性能。
共有 158 例中国 CKD 患者纳入本外部验证研究。GFR 与 mGFR 高度相关,相关系数为 0.94。然而,GFR 的回归方程为 GFR=0.66*mGFR+23.05,回归系数远小于 1,截距较宽。与亚洲改良 CKD-EPI 方程相比,集成学习模型的诊断性能在 Bland-Altman 分析中也显示出更宽的 95%一致性界限(52.6 与 42.4 ml/min/1.73 m),偏差更差(8.0 与 1.0 ml/min/1.73 m,P=0.02),精度更差(18.4 与 12.7 ml/min/1.73 m,P<0.001),P 值更低(58.9%与 74.1%,P<0.001)。
本研究表明,在总体中国 CKD 患者中,集成学习模型不能替代亚洲改良 CKD-EPI 方程作为 GFR 估计的首选方法。