Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706.
Department of Animal Sciences, University of Florida, Gainesville 32608.
J Dairy Sci. 2022 Jan;105(1):525-534. doi: 10.3168/jds.2021-20872. Epub 2021 Oct 28.
The onset of lactation results in a sudden irreversible loss of Ca for colostrum and milk synthesis. Some cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, whereas a larger proportion of cows develop subclinical hypocalcemia that predisposes them to other peripartum diseases. The objective of this study was to perform a comprehensive genomic analysis of blood total Ca concentration in periparturient Holstein cows. We first performed a genomic scan and a subsequent gene-set analysis to identify candidate genes, biological pathways, and molecular mechanisms affecting postpartum Ca concentration. Then, we assessed the prediction of postpartum Ca concentration using genomic information. Data consisted of 7,691 records of plasma or serum concentrations of Ca measured in the first, second, and third day after parturition of 959 primiparous and 1,615 multiparous cows that calved between December 2015 and June 2020 in 2 dairy herds. All cows were genotyped with 80k SNPs. The statistical model included lactation (1 to 5+), calf category (male, females, twins), and day as fixed effects, and season-treatment-experiment, animal, and permanent environmental as random effects. Model predictive ability was evaluated using 10-fold cross-validation. Heritability and repeatability estimates were 0.083 (standard error = 0.017) and 0.444 (standard error = 0.028). The association mapping identified 2 major regions located on Bos taurus autosome (BTA)6 and BTA16 that explained 1.2% and 0.7% of additive genetic variance of Ca concentration, respectively. Interestingly, the region on BTA6 harbors the GC gene, which encodes the vitamin D binding protein, and the region on BTA16 harbors LRRC38, which is actively involved in K transport. Other sizable peaks were identified on BTA5, BTA2, BTA7, BTA14, and BTA9. These regions harbor genes associated with Ca channels (CACNA1S, CRACR2A), K channels (KCNK9), bone remodeling (LRP6), and milk production (SOCS2). The gene-set analysis revealed terms related to vitamin transport, calcium ion transport, calcium ion binding, and calcium signaling. Genomic predictions of phenotypic and genomic estimated breeding values of Ca concentration yielded predictive correlations up to 0.50 and 0.15, respectively. Overall, the present study contributes to a better understanding of the genetic basis of postpartum blood Ca concentration in Holstein cows. In addition, the findings may contribute to the development of novel selection and management strategies for reducing periparturient hypocalcemia in dairy cattle.
泌乳的开始导致钙对初乳和乳汁合成的不可逆快速流失。一些奶牛无法迅速适应这种需求,导致临床低钙血症,而更大比例的奶牛则出现亚临床低钙血症,使它们易患其他围产期疾病。本研究的目的是对围产期荷斯坦奶牛的全血总钙浓度进行全面的基因组分析。我们首先进行了基因组扫描和随后的基因集分析,以确定影响产后钙浓度的候选基因、生物途径和分子机制。然后,我们评估了利用基因组信息预测产后钙浓度。数据包括 959 头初产和 1615 头经产奶牛产后第 1、2 和 3 天血浆或血清中钙浓度的 7691 个记录,这些奶牛于 2015 年 12 月至 2020 年 6 月在 2 个奶牛场分娩。所有奶牛均用 80kSNP 进行基因分型。统计模型包括泌乳(1-5+)、小牛类别(雄性、雌性、双胞胎)和天作为固定效应,季节-处理-实验、动物和永久环境作为随机效应。使用 10 折交叉验证评估模型预测能力。遗传力和可重复性估计值分别为 0.083(标准误差=0.017)和 0.444(标准误差=0.028)。关联图谱鉴定出位于牛 Taurus 染色体(BTA)6 和 BTA16 上的 2 个主要区域,分别解释了钙浓度加性遗传方差的 1.2%和 0.7%。有趣的是,位于 BTA6 上的区域包含编码维生素 D 结合蛋白的 GC 基因,而位于 BTA16 上的区域包含积极参与 K 转运的 LRRC38。还在 BTA5、BTA2、BTA7、BTA14 和 BTA9 上鉴定出其他较大的峰。这些区域包含与钙通道(CACNA1S、CRACR2A)、K 通道(KCNK9)、骨重塑(LRP6)和产奶量(SOCS2)相关的基因。基因集分析揭示了与维生素转运、钙离子转运、钙离子结合和钙信号相关的术语。表型和基因组估计育种值的基因组预测产生的预测相关性高达 0.50 和 0.15。总的来说,本研究有助于更好地理解荷斯坦奶牛产后血液钙浓度的遗传基础。此外,研究结果可能有助于开发新的选择和管理策略,以减少奶牛围产期低钙血症。