Riehl Paul S, Richardson Alistair D, Sakamoto Tatsuhiro, Reid Jolene P, Schindler Corinna S
Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
Chem Sci. 2021 Oct 4;12(42):14133-14142. doi: 10.1039/d1sc03741b. eCollection 2021 Nov 3.
Enantiodivergence is an important concept in asymmetric catalysis that enables access to both enantiomers of a product relying on the same chiral source as reagent. This strategy is particularly appealing as an alternate approach when only one enantiomer of the required chiral ligand is readily accessible but both enantiomers of the product are desired. Despite the potential significance, general catalytic methods to effectively reverse enantioselectivity by changing an achiral reaction parameter remain underdeveloped. Herein we report our studies focused on elucidating the origin of metal-controlled enantioselectivity reversal in Lewis acid-catalysed Michael additions. Rigorous experimental and computational investigations reveal that specific Lewis and Brønsted acid interactions between the substrate and ligand change depending on the ionic radius of the metal catalyst, and are key factors responsible for the observed enantiodivergence. This holds potential to further our understanding of and facilitate the design of future enantiodivergent transformations.
对映体发散是不对称催化中的一个重要概念,它能够依靠作为试剂的同一手性源获得产物的两种对映体。当所需手性配体的只有一种对映体易于获得而产物的两种对映体都需要时,作为一种替代方法,这种策略特别有吸引力。尽管具有潜在的重要性,但通过改变非手性反应参数来有效反转对映选择性的通用催化方法仍未得到充分发展。在此,我们报告我们的研究,重点是阐明路易斯酸催化的迈克尔加成反应中金属控制的对映选择性反转的起源。严格的实验和计算研究表明,底物与配体之间特定的路易斯酸和布朗斯特酸相互作用会根据金属催化剂的离子半径而变化,并且是观察到的对映体发散的关键因素。这有可能进一步加深我们对未来对映体发散转化的理解并促进其设计。