European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck Society, Göttingen, Germany.
BCCN Göttingen, Göttingen, Germany.
Elife. 2021 Nov 11;10:e61475. doi: 10.7554/eLife.61475.
How neural networks evolved to generate the diversity of species-specific communication signals is unknown. For receivers of the signals, one hypothesis is that novel recognition phenotypes arise from parameter variation in computationally flexible feature detection networks. We test this hypothesis in crickets, where males generate and females recognize the mating songs with a species-specific pulse pattern, by investigating whether the song recognition network in the cricket brain has the computational flexibility to recognize different temporal features. Using electrophysiological recordings from the network that recognizes crucial properties of the pulse pattern on the short timescale in the cricket , we built a computational model that reproduces the neuronal and behavioral tuning of that species. An analysis of the model's parameter space reveals that the network can provide all recognition phenotypes for pulse duration and pause known in crickets and even other insects. Phenotypic diversity in the model is consistent with known preference types in crickets and other insects, and arises from computations that likely evolved to increase energy efficiency and robustness of pattern recognition. The model's parameter to phenotype mapping is degenerate - different network parameters can create similar changes in the phenotype - which likely supports evolutionary plasticity. Our study suggests that computationally flexible networks underlie the diverse pattern recognition phenotypes, and we reveal network properties that constrain and support behavioral diversity.
神经网络如何进化产生物种特异性通讯信号的多样性尚不清楚。对于信号的接收者来说,有一种假设认为,新颖的识别表型是由计算灵活的特征检测网络中的参数变化引起的。我们在蟋蟀中测试了这一假设,蟋蟀的雄性发出、雌性识别具有物种特异性脉冲模式的交配歌曲,我们通过调查蟋蟀大脑中的歌曲识别网络是否具有计算灵活性来识别不同的时间特征。我们使用来自识别蟋蟀中脉冲模式关键属性的网络的电生理记录,构建了一个计算模型,该模型再现了该物种的神经元和行为调谐。对模型参数空间的分析表明,该网络可以提供蟋蟀和其他昆虫中已知的脉冲持续时间和停顿的所有识别表型,甚至可以提供其他昆虫的识别表型。模型中的表型多样性与蟋蟀和其他昆虫中已知的偏好类型一致,并且是通过可能进化而来的计算产生的,这些计算旨在提高模式识别的能量效率和鲁棒性。模型的参数到表型的映射是退化的-不同的网络参数可以在表型中产生相似的变化-这可能支持进化可塑性。我们的研究表明,计算灵活的网络是多样化的模式识别表型的基础,我们揭示了限制和支持行为多样性的网络特性。