Department of Chemical Engineering, University of California, Davis, California 95616, United States.
Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States.
J Phys Chem Lett. 2021 Nov 25;12(46):11252-11258. doi: 10.1021/acs.jpclett.1c03381. Epub 2021 Nov 11.
Catalytic conversion of alcohols underlies many commodity and fine chemical syntheses, but a complete mechanistic understanding is lacking. We examined catalytic oxidative conversion of methanol near atmospheric pressure using operando small-aperture molecular beam time-of-flight mass spectrometry, interrogating the gas phase 500 μm above Pd-based catalyst surfaces. In addition to a variety of stable C species, we detected methoxymethanol (CHOCHOH)─a rarely observed and reactive C oxygenate that has been proposed to be a critical intermediate in methyl formate production. Methoxymethanol is observed above Pd, AuPd alloys, and oxide-supported Pd (common methanol oxidation catalysts). Experiments establish temperature and reactant feed ratio dependences of methoxymethanol generation, and calculations using density functional theory are used to examine the energetics of its likely formation pathway. These results suggest that future development of catalysts and microkinetic models for methanol oxidation should be augmented and constrained to accommodate the formation, desorption, adsorption, and surface reactions involving methoxymethanol.
醇的催化转化是许多商品和精细化学品合成的基础,但缺乏完整的机理理解。我们使用原位小孔径分子束飞行时间质谱法,在钯基催化剂表面上方 500μm 的气相中进行了大气压下甲醇的催化氧化转化研究,检测到了各种稳定的 C 物种,还检测到了甲氧基甲醇(CHOCHOH)——一种很少被观察到且反应性很强的 C 氧化物,它被认为是甲酸甲酯生成的关键中间体。在 Pd、AuPd 合金和氧化物负载的 Pd(常见的甲醇氧化催化剂)上都观察到了甲氧基甲醇。实验确定了甲氧基甲醇生成的温度和反应物进料比依赖性,并用密度泛函理论计算研究了其可能形成途径的能学。这些结果表明,未来应增强和约束甲醇氧化催化剂和微观动力学模型的开发,以适应涉及甲氧基甲醇的形成、脱附、吸附和表面反应。