Du Andong, Lattanzi Lucia, Jarfors Anders Wollmar Eric, Zheng Jinchuan, Wang Kaikun, Yu Gegang
Institute of Semi-Solid Metal Technology, China Academy of Machinery Sciences and Technology (Jiangle), No. 22 Huancheng East Road, Jiangle, Sanming 353300, China.
Department of Materials Processing and Control Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China.
Materials (Basel). 2021 Oct 21;14(21):6287. doi: 10.3390/ma14216287.
The use of silicon carbide particles (SiCp) as reinforcement in aluminium (Al)-based composites (Al/SiCp) can offer high hardness and high stiffness. The rare-earth elements like lanthanum (La) and cerium (Ce) and transition metals like nickel (Ni) and copper (Cu) were added into the matrix to form intermetallic phases; this is one way to improve the mechanical property of the composite at elevated temperatures. The α-Al(Fe,Mn)Si, Al(La,Ce)Ti, and Al(La,Ce), π-AlFeMgSi phases are formed. Nanoindentation was employed to measure the hardness and elastic modulus of the phases formed in the composite alloys. The rule of mixture was used to predict the modulus of the matrix alloys. The Halpin-Tsai model was applied to calculate the elastic modulus of the particle-reinforced composites. The transition metals (Ni and Cu) and rare-earth elements (La and Ce) determined a 5-15% increase of the elastic modulus of the matrix alloy. The SiC particles increased the elastic modulus of the matrix alloy by 10-15% in composite materials.
使用碳化硅颗粒(SiCp)作为铝基复合材料(Al/SiCp)的增强材料,可以提供高硬度和高刚度。将镧(La)、铈(Ce)等稀土元素以及镍(Ni)、铜(Cu)等过渡金属添加到基体中以形成金属间相;这是在高温下改善复合材料力学性能的一种方法。形成了α-Al(Fe,Mn)Si、Al(La,Ce)Ti和Al(La,Ce)、π-AlFeMgSi相。采用纳米压痕法测量复合合金中形成的相的硬度和弹性模量。使用混合法则预测基体合金的模量。应用Halpin-Tsai模型计算颗粒增强复合材料的弹性模量。过渡金属(Ni和Cu)和稀土元素(La和Ce)使基体合金的弹性模量提高了5-15%。在复合材料中,SiC颗粒使基体合金的弹性模量提高了10-15%。