Suppr超能文献

BlocTrain:用于高效基于脉冲的深度学习的逐块条件训练与推理

BlocTrain: Block-Wise Conditional Training and Inference for Efficient Spike-Based Deep Learning.

作者信息

Srinivasan Gopalakrishnan, Roy Kaushik

机构信息

Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States.

出版信息

Front Neurosci. 2021 Oct 29;15:603433. doi: 10.3389/fnins.2021.603433. eCollection 2021.

Abstract

Spiking neural networks (SNNs), with their inherent capability to learn sparse spike-based input representations over time, offer a promising solution for enabling the next generation of intelligent autonomous systems. Nevertheless, end-to-end training of deep SNNs is both compute- and memory-intensive because of the need to backpropagate error gradients through time. We propose BlocTrain, which is a scalable and complexity-aware incremental algorithm for memory-efficient training of deep SNNs. We divide a deep SNN into blocks, where each block consists of few convolutional layers followed by a classifier. We train the blocks sequentially using local errors from the classifier. Once a given block is trained, our algorithm dynamically figures out easy vs. hard classes using the class-wise accuracy, and trains the deeper block only on the hard class inputs. In addition, we also incorporate a hard class detector (HCD) per block that is used during inference to exit early for the easy class inputs and activate the deeper blocks only for the hard class inputs. We trained ResNet-9 SNN divided into three blocks, using BlocTrain, on CIFAR-10 and obtained 86.4% accuracy, which is achieved with up to 2.95× lower memory requirement during the course of training, and 1.89× compute efficiency per inference (due to early exit strategy) with 1.45× memory overhead (primarily due to classifier weights) compared to end-to-end network. We also trained ResNet-11, divided into four blocks, on CIFAR-100 and obtained 58.21% accuracy, which is one of the first reported accuracy for SNN trained entirely with spike-based backpropagation on CIFAR-100.

摘要

脉冲神经网络(SNN)具有随着时间学习基于稀疏脉冲的输入表示的内在能力,为实现下一代智能自主系统提供了一个有前景的解决方案。然而,深度SNN的端到端训练在计算和内存方面都很密集,因为需要通过时间反向传播误差梯度。我们提出了BlocTrain,这是一种用于深度SNN的内存高效训练的可扩展且复杂度感知的增量算法。我们将深度SNN划分为多个块,每个块由几个卷积层后跟一个分类器组成。我们使用来自分类器的局部误差顺序训练这些块。一旦给定的块被训练,我们的算法使用逐类准确率动态区分简单类和困难类,并仅在困难类输入上训练更深的块。此外,我们还为每个块合并了一个困难类检测器(HCD),该检测器在推理期间用于对简单类输入提前退出,仅对困难类输入激活更深的块。我们使用BlocTrain在CIFAR-10上训练了分为三个块的ResNet-9 SNN,获得了86.4%的准确率,在训练过程中内存需求降低了2.95倍,每次推理的计算效率提高了1.89倍(由于早期退出策略),与端到端网络相比内存开销增加了1.45倍(主要由于分类器权重)。我们还在CIFAR-100上训练了分为四个块的ResNet-11,获得了58.21%的准确率,这是首次在CIFAR-100上完全使用基于脉冲的反向传播训练的SNN所报告的准确率之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f69/8586528/8c718f29f6e2/fnins-15-603433-g0001.jpg

相似文献

1
BlocTrain: Block-Wise Conditional Training and Inference for Efficient Spike-Based Deep Learning.
Front Neurosci. 2021 Oct 29;15:603433. doi: 10.3389/fnins.2021.603433. eCollection 2021.
2
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
Front Neurosci. 2020 Feb 28;14:119. doi: 10.3389/fnins.2020.00119. eCollection 2020.
3
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
Front Neurosci. 2021 Nov 4;15:756876. doi: 10.3389/fnins.2021.756876. eCollection 2021.
5
ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing.
Front Neurosci. 2019 Mar 19;13:189. doi: 10.3389/fnins.2019.00189. eCollection 2019.
6
A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2023 Jan;34(1):446-460. doi: 10.1109/TNNLS.2021.3095724. Epub 2023 Jan 5.
7
DIET-SNN: A Low-Latency Spiking Neural Network With Direct Input Encoding and Leakage and Threshold Optimization.
IEEE Trans Neural Netw Learn Syst. 2023 Jun;34(6):3174-3182. doi: 10.1109/TNNLS.2021.3111897. Epub 2023 Jun 1.
8
Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
Neural Netw. 2021 Dec;144:686-698. doi: 10.1016/j.neunet.2021.09.022. Epub 2021 Oct 5.
10
Direct training high-performance spiking neural networks for object recognition and detection.
Front Neurosci. 2023 Aug 8;17:1229951. doi: 10.3389/fnins.2023.1229951. eCollection 2023.

本文引用的文献

1
Progressive Tandem Learning for Pattern Recognition With Deep Spiking Neural Networks.
IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):7824-7840. doi: 10.1109/TPAMI.2021.3114196. Epub 2022 Oct 4.
2
Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE).
Front Neurosci. 2020 May 12;14:424. doi: 10.3389/fnins.2020.00424. eCollection 2020.
3
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
Front Neurosci. 2020 Feb 28;14:119. doi: 10.3389/fnins.2020.00119. eCollection 2020.
4
Synthesizing Images From Spatio-Temporal Representations Using Spike-Based Backpropagation.
Front Neurosci. 2019 Jun 18;13:621. doi: 10.3389/fnins.2019.00621. eCollection 2019.
5
ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing.
Front Neurosci. 2019 Mar 19;13:189. doi: 10.3389/fnins.2019.00189. eCollection 2019.
6
Going Deeper in Spiking Neural Networks: VGG and Residual Architectures.
Front Neurosci. 2019 Mar 7;13:95. doi: 10.3389/fnins.2019.00095. eCollection 2019.
7
Deep Supervised Learning Using Local Errors.
Front Neurosci. 2018 Aug 31;12:608. doi: 10.3389/fnins.2018.00608. eCollection 2018.
9
Deep Cascade Learning.
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5475-5485. doi: 10.1109/TNNLS.2018.2805098. Epub 2018 Mar 6.
10
Event-Based, Timescale Invariant Unsupervised Online Deep Learning With STDP.
Front Comput Neurosci. 2018 Jun 14;12:46. doi: 10.3389/fncom.2018.00046. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验