Suppr超能文献

神经元为睡眠稳态和昼夜节律钟神经元之间提供了联系。

neurons provide a link between sleep homeostat and circadian clock neurons.

机构信息

HHMI, University of Pennsylvania, Philadelphia, PA 19104.

Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2111183118.

Abstract

Sleep is controlled by homeostatic mechanisms, which drive sleep after wakefulness, and a circadian clock, which confers the 24-h rhythm of sleep. These processes interact with each other to control the timing of sleep in a daily cycle as well as following sleep deprivation. However, the mechanisms by which they interact are poorly understood. We show here that neurons, previously identified as neurons that function downstream of the clock to regulate rhythms of locomotor activity, are also targets of the sleep homeostat. Sleep deprivation decreases activity of neurons, likely to suppress circadian-driven activity during recovery sleep, and ablation of neurons promotes sleep increases generated by activation of the homeostatic sleep locus, the dorsal fan-shaped body (dFB). Also, mutations in peptides produced by the locus increase recovery sleep following deprivation. Transsynaptic mapping reveals that neurons feed back onto central clock neurons, which also show decreased activity upon sleep loss, in a Hugin peptide-dependent fashion. We propose that neurons integrate circadian and sleep signals to modulate circadian circuitry and regulate the timing of sleep.

摘要

睡眠受两种机制控制

一种是基于稳态的机制,该机制会在清醒后引发睡眠;另一种是昼夜节律钟,它赋予睡眠 24 小时的节奏。这两种机制相互作用,控制着睡眠在日常周期中的时间以及在睡眠剥夺后的时间。然而,它们相互作用的机制尚不清楚。我们在这里表明,先前被确定为时钟下游调节运动活动节律的神经元,也是睡眠稳态的靶点。睡眠剥夺会降低神经元的活动,可能会在恢复性睡眠期间抑制由昼夜节律驱动的活动,而 神经元的消融会促进由稳态睡眠中枢(背扇形体)激活引起的睡眠增加。此外,由 基因座产生的肽的突变会增加剥夺后的恢复性睡眠。转导性映射表明,神经元以 Hugin 肽依赖的方式反馈到中央时钟神经元,而中央时钟神经元在睡眠缺失时也表现出活性降低。我们提出,神经元整合昼夜节律和睡眠信号,以调节昼夜节律回路并调节睡眠的时间。

相似文献

1
neurons provide a link between sleep homeostat and circadian clock neurons.
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2111183118.
2
A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity.
Curr Biol. 2017 Jul 10;27(13):1915-1927.e5. doi: 10.1016/j.cub.2017.05.089. Epub 2017 Jun 29.
4
Circadian programming of the ellipsoid body sleep homeostat in .
Elife. 2022 Jun 23;11:e74327. doi: 10.7554/eLife.74327.
5
Control of sleep by cyclin A and its regulator.
Science. 2012 Mar 30;335(6076):1617-21. doi: 10.1126/science.1212476.
6
A Wake-Promoting Circadian Output Circuit in Drosophila.
Curr Biol. 2018 Oct 8;28(19):3098-3105.e3. doi: 10.1016/j.cub.2018.07.024. Epub 2018 Sep 27.
7
Stress response genes protect against lethal effects of sleep deprivation in Drosophila.
Nature. 2002 May 16;417(6886):287-91. doi: 10.1038/417287a.
8
Wakefulness Is Promoted during Day Time by PDFR Signalling to Dopaminergic Neurons in Drosophila melanogaster.
eNeuro. 2018 Aug 8;5(4). doi: 10.1523/ENEURO.0129-18.2018. eCollection 2018 Jul-Aug.
9
Social Experience Is Sufficient to Modulate Sleep Need of Drosophila without Increasing Wakefulness.
PLoS One. 2016 Mar 3;11(3):e0150596. doi: 10.1371/journal.pone.0150596. eCollection 2016.
10
Overlapping Central Clock Network Circuitry Regulates Circadian Feeding and Activity Rhythms in Drosophila.
J Biol Rhythms. 2024 Oct;39(5):440-462. doi: 10.1177/07487304241263734. Epub 2024 Jul 26.

引用本文的文献

1
Neuropeptide-Dependent Spike Time Precision and Plasticity in Circadian Output Neurons.
Eur J Neurosci. 2025 Mar;61(5):e70037. doi: 10.1111/ejn.70037.
3
A brief history of insect neuropeptide and peptide hormone research.
Cell Tissue Res. 2025 Feb;399(2):129-159. doi: 10.1007/s00441-024-03936-0. Epub 2024 Dec 10.
4
Neuropeptide-dependent spike time precision and plasticity in circadian output neurons.
bioRxiv. 2024 Dec 21:2024.10.06.616871. doi: 10.1101/2024.10.06.616871.
5
Regulatory mechanism of cold-inducible diapause in Caenorhabditis elegans.
Nat Commun. 2024 Jul 10;15(1):5793. doi: 10.1038/s41467-024-50111-8.
7
Single-cell transcriptomics reveals that glial cells integrate homeostatic and circadian processes to drive sleep-wake cycles.
Nat Neurosci. 2024 Feb;27(2):359-372. doi: 10.1038/s41593-023-01549-4. Epub 2024 Jan 23.
8
Age-regulated cycling metabolites are relevant for behavior.
Aging Cell. 2024 Apr;23(4):e14082. doi: 10.1111/acel.14082. Epub 2024 Jan 11.
9
The NFκB is required for behavioral and molecular correlates of sleep homeostasis in .
bioRxiv. 2023 Oct 16:2023.10.12.562029. doi: 10.1101/2023.10.12.562029.

本文引用的文献

2
Axo-axonic synapses: Diversity in neural circuit function.
J Comp Neurol. 2021 Jun;529(9):2391-2401. doi: 10.1002/cne.25087. Epub 2020 Dec 18.
3
A connectome and analysis of the adult central brain.
Elife. 2020 Sep 7;9:e57443. doi: 10.7554/eLife.57443.
6
Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning?
Neurobiol Sleep Circadian Rhythms. 2018 Mar 1;5:68-77. doi: 10.1016/j.nbscr.2018.02.003. eCollection 2018 Jun.
7
Differential regulation of the sleep homeostat by circadian and arousal inputs.
Elife. 2019 Feb 5;8:e40487. doi: 10.7554/eLife.40487.
8
A Wake-Promoting Circadian Output Circuit in Drosophila.
Curr Biol. 2018 Oct 8;28(19):3098-3105.e3. doi: 10.1016/j.cub.2018.07.024. Epub 2018 Sep 27.
9
A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila.
Neuron. 2018 Nov 7;100(3):624-635.e4. doi: 10.1016/j.neuron.2018.09.002. Epub 2018 Sep 27.
10
Molecular and circuit mechanisms mediating circadian clock output in the Drosophila brain.
Eur J Neurosci. 2020 Jan;51(1):268-281. doi: 10.1111/ejn.14092. Epub 2018 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验