Wang Tong, Liu Yanyu, Zhang Xiaomin, Wang Jiayi, Zhang Yongguang, Li Yebao, Zhu Yaojie, Li Gaoran, Wang Xin
School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.
South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou 510006, China.
ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56085-56094. doi: 10.1021/acsami.1c16191. Epub 2021 Nov 16.
Lithium-sulfur (Li-S) batteries have attracted much attention attributed to their high theoretical energy density, whereas the parasitic shuttling behavior of lithium polysulfides (LiPS) hinders this technology from yielding practically competitive performance. Targeting this critical challenge, we develop an advanced polysulfide barrier by modifying the conventional separator with CNTs-interspersed VC/VO nanosheets to alleviate the shuttle effect. The partial oxidization of VC MXene constructs the VC/VO composite with VO nanoparticles uniformly dispersed on few-layered VC nanosheets, which synergistically and concurrently improves the sulfur confinement and redox reaction kinetics. Moreover, the interstacking between the 1D CNTs and the 2D VC/VO not only prevents the agglomeration of nanosheets for efficient exposure of active interfaces but also constructs a robust conductive network for fast charge and mass transfers. The Li-S cells with VC/VO/CNTs-modified separator realize a high initial capacity (1240.4 mAh g at 0.2 C), decent capacity retention (82.6% over 500 cycles), and favorable areal capacity (5.9 mAh cm) at a raised sulfur loading (6.0 mg cm). This work affords a unique multifunctional separator design toward durable and efficient sulfur electrochemistry, holding great promise for improving the electrochemical properties of Li-S batteries.
锂硫(Li-S)电池因其高理论能量密度而备受关注,然而多硫化锂(LiPS)的寄生穿梭行为阻碍了该技术实现具有实际竞争力的性能。针对这一关键挑战,我们通过用碳纳米管穿插的VC/VO纳米片修饰传统隔膜来开发一种先进的多硫化物阻挡层,以减轻穿梭效应。VC MXene的部分氧化构建了VC/VO复合材料,其中VO纳米颗粒均匀分散在少层VC纳米片上,协同并同时改善了硫的限制和氧化还原反应动力学。此外,一维碳纳米管与二维VC/VO之间的堆叠不仅防止了纳米片的团聚以有效暴露活性界面,还构建了一个强大的导电网络以实现快速电荷和质量转移。采用VC/VO/CNTs修饰隔膜的锂硫电池在0.2 C下实现了高初始容量(1240.4 mAh g)、良好的容量保持率(500次循环后为82.6%)以及在提高硫负载量(6.0 mg cm)时具有良好的面积容量(5.9 mAh cm)。这项工作为持久高效的硫电化学提供了一种独特的多功能隔膜设计,对改善锂硫电池的电化学性能具有巨大潜力。