Suppr超能文献

患者特异性材料特性对动脉瘤壁应力的影响:有限元研究

Impact of Patient-Specific Material Properties on Aneurysm Wall Stress: Finite Element Study.

作者信息

Wang Zhongjie, Xuan Yue, Guccione Julius M, Tseng Elaine E, Ge Liang

机构信息

Department of Surgery, University of California San Francisco and San Francisco Veterans Affairs Medical Centers, San Francisco, CA.

出版信息

J Heart Valve Dis. 2018;27(5):275-284.

Abstract

BACKGROUND

Finite element analysis (FEA) can be used to determine ascending thoracic aortic aneurysm (aTAA) wall stress as a potential biomechanical predictor of dissection. FEA is dependent upon zero-pressure three-dimensional geometry, patient-specific material properties, wall thickness, and hemodynamic loading conditions. Unfortunately, determining material properties on unoperated patients using non-invasive means is challenging; and we have previously demonstrated significant material property differences among aTAA patients. Our study objective was to determine the impact of patient-specific material properties on aTAA wall stress. Using FEA, we investigated if patient-specific wall stress could be reasonably predicted using population-averaged material properties, which would greatly simplify dissection prediction.

METHODS

ATAA patients (n=15) with both computed tomography (CT) imaging and surgical aTAA specimens were recruited. Patient-specific aTAA CT geometries were meshed and pre-stress geometries determined as previously described. Patient-specific material properties were derived from biaxial stretch testing of aTAA tissue and incorporated into a fiber-enforced hyper-elastic model, while group-averaged material properties were estimated using mean values of each parameter. Population-averaged material properties were also calculated from literature and studied. Wall stress distribution and its magnitude were determined using LS-DYNA FEA software. Peak and averaged stresses and stress distributions were compared between patient-specific and both group- and population-averaged material property models.

RESULTS

Patient-specific material properties had minimal influence on either peak or averaged wall stress compared to use of group- or population-averaged material properties. Stress distribution was also nearly superimposed among models with patient-specific vs. group- or population-averaged material properties and provided similar prediction of sites most prone to rupture.

CONCLUSIONS

FEA using population-averaged material properties likely provides reliable stress prediction to indicate sites most prone to rupture. Population-averaged material properties may be reliably used in computational models to assess wall stress and significantly simplify risk prediction of aTAA dissection.

摘要

背景

有限元分析(FEA)可用于确定升主动脉瘤(aTAA)壁应力,作为夹层形成的潜在生物力学预测指标。有限元分析依赖于零压力三维几何形状、患者特异性材料特性、壁厚和血流动力学负荷条件。不幸的是,使用非侵入性方法确定未手术患者的材料特性具有挑战性;而且我们之前已经证明aTAA患者之间存在显著的材料特性差异。我们的研究目的是确定患者特异性材料特性对aTAA壁应力的影响。使用有限元分析,我们研究了是否可以使用群体平均材料特性合理预测患者特异性壁应力,这将大大简化夹层预测。

方法

招募了15例同时有计算机断层扫描(CT)成像和手术切除的aTAA标本的患者。对患者特异性aTAA CT几何形状进行网格化,并如前所述确定预应力几何形状。患者特异性材料特性源自aTAA组织的双轴拉伸试验,并纳入纤维增强超弹性模型,而群体平均材料特性则使用每个参数的平均值进行估计。还从文献中计算并研究了群体平均材料特性。使用LS-DYNA有限元分析软件确定壁应力分布及其大小。比较了患者特异性与群体平均和总体平均材料特性模型之间的峰值和平均应力以及应力分布。

结果

与使用群体平均或总体平均材料特性相比,患者特异性材料特性对峰值或平均壁应力的影响最小。在具有患者特异性与群体平均或总体平均材料特性的模型中,应力分布也几乎重叠,并对最容易破裂的部位提供了类似的预测。

结论

使用群体平均材料特性的有限元分析可能提供可靠的应力预测,以指示最容易破裂的部位。群体平均材料特性可可靠地用于计算模型中,以评估壁应力,并显著简化aTAA夹层的风险预测。

相似文献

4
Wall stress analyses in patients with ≥5 cm versus <5 cm ascending thoracic aortic aneurysm.
J Thorac Cardiovasc Surg. 2021 Nov;162(5):1452-1459. doi: 10.1016/j.jtcvs.2020.02.046. Epub 2020 Feb 19.
5
Ascending thoracic aortic aneurysm wall stress analysis using patient-specific finite element modeling of in vivo magnetic resonance imaging.
Interact Cardiovasc Thorac Surg. 2015 Oct;21(4):471-80. doi: 10.1093/icvts/ivv186. Epub 2015 Jul 14.
6
On the role of material properties in ascending thoracic aortic aneurysms.
Comput Biol Med. 2019 Jun;109:70-78. doi: 10.1016/j.compbiomed.2019.04.022. Epub 2019 Apr 24.
7
Patient specific stress and rupture analysis of ascending thoracic aneurysms.
J Biomech. 2015 Jul 16;48(10):1836-43. doi: 10.1016/j.jbiomech.2015.04.035. Epub 2015 May 2.
9
Biomechanical properties of human ascending thoracic aortic aneurysms.
Ann Thorac Surg. 2013 Jul;96(1):50-8. doi: 10.1016/j.athoracsur.2013.03.094. Epub 2013 May 31.
10
Height and body surface area versus wall stress for stratification of mid-term outcomes in ascending aortic aneurysm.
Int J Cardiol Heart Vasc. 2024 Feb 28;51:101375. doi: 10.1016/j.ijcha.2024.101375. eCollection 2024 Apr.

引用本文的文献

1
The Influence of Material Properties and Wall Thickness on Predicted Wall Stress in Ascending Aortic Aneurysms: A Finite Element Study.
Cardiovasc Eng Technol. 2025 Feb;16(1):52-65. doi: 10.1007/s13239-024-00756-9. Epub 2024 Oct 25.
2
Temporal evolution of ascending aortic aneurysm wall stress predicts all-cause mortality.
Interdiscip Cardiovasc Thorac Surg. 2024 Jul 3;39(1). doi: 10.1093/icvts/ivae116.
3
Height and body surface area versus wall stress for stratification of mid-term outcomes in ascending aortic aneurysm.
Int J Cardiol Heart Vasc. 2024 Feb 28;51:101375. doi: 10.1016/j.ijcha.2024.101375. eCollection 2024 Apr.
5
Regional wall stress differences on tricuspid aortic valve-associated ascending aortic aneurysms.
Interact Cardiovasc Thorac Surg. 2022 Jun 1;34(6):1115-1123. doi: 10.1093/icvts/ivab269.
6
Reply from authors: Aortic aneurysm biomechanics: Perfect is the enemy of good.
J Thorac Cardiovasc Surg. 2020 Sep;160(3):e105-e106. doi: 10.1016/j.jtcvs.2020.05.028. Epub 2020 Jun 25.
7
Wall stress analyses in patients with ≥5 cm versus <5 cm ascending thoracic aortic aneurysm.
J Thorac Cardiovasc Surg. 2021 Nov;162(5):1452-1459. doi: 10.1016/j.jtcvs.2020.02.046. Epub 2020 Feb 19.
8
Wall Stress Distribution in Bicuspid Aortic Valve-Associated Ascending Thoracic Aortic Aneurysms.
Ann Thorac Surg. 2020 Sep;110(3):807-814. doi: 10.1016/j.athoracsur.2019.12.035. Epub 2020 Mar 5.

本文引用的文献

1
Wall stress on ascending thoracic aortic aneurysms with bicuspid compared with tricuspid aortic valve.
J Thorac Cardiovasc Surg. 2018 Aug;156(2):492-500. doi: 10.1016/j.jtcvs.2018.03.004. Epub 2018 Mar 8.
2
Aortic Risk Redux.
J Am Coll Cardiol. 2016 Sep 13;68(11):1220-1222. doi: 10.1016/j.jacc.2016.07.732.
3
Risk of Aortic Dissection in the Moderately Dilated Ascending Aorta.
J Am Coll Cardiol. 2016 Sep 13;68(11):1209-1219. doi: 10.1016/j.jacc.2016.06.025.
4
Ascending thoracic aortic aneurysm wall stress analysis using patient-specific finite element modeling of in vivo magnetic resonance imaging.
Interact Cardiovasc Thorac Surg. 2015 Oct;21(4):471-80. doi: 10.1093/icvts/ivv186. Epub 2015 Jul 14.
5
Patient specific stress and rupture analysis of ascending thoracic aneurysms.
J Biomech. 2015 Jul 16;48(10):1836-43. doi: 10.1016/j.jbiomech.2015.04.035. Epub 2015 May 2.
7
Differential tensile strength and collagen composition in ascending aortic aneurysms by aortic valve phenotype.
Ann Thorac Surg. 2013 Dec;96(6):2147-54. doi: 10.1016/j.athoracsur.2013.07.001. Epub 2013 Sep 7.
8
Biomechanical properties of human ascending thoracic aortic aneurysms.
Ann Thorac Surg. 2013 Jul;96(1):50-8. doi: 10.1016/j.athoracsur.2013.03.094. Epub 2013 May 31.
9
Biomechanical characterization of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch.
Acta Biomater. 2013 Aug;9(8):7927-36. doi: 10.1016/j.actbio.2013.04.021. Epub 2013 Apr 30.
10
Importance of material model in wall stress prediction in abdominal aortic aneurysms.
Med Eng Phys. 2013 Sep;35(9):1282-9. doi: 10.1016/j.medengphy.2013.01.008. Epub 2013 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验