Suppr超能文献

一种结合影像特征和临床因素以预测肝内胆管癌侵袭和转移的多维度列线图。

A multidimensional nomogram combining imaging features and clinical factors to predict the invasiveness and metastasis of combined hepatocellular cholangiocarcinoma.

作者信息

Wang Yi, Zhou Chang-Wu, Zhu Gui-Qi, Li Na, Qian Xian-Ling, Chong Huan-Huan, Yang Chun, Zeng Meng-Su

机构信息

Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China.

Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Ann Transl Med. 2021 Oct;9(20):1518. doi: 10.21037/atm-21-2500.

Abstract

BACKGROUND

Combined hepatocellular cholangiocarcinoma (CHCC-CCA) is a rare type of primary liver cancer having aggressive behavior. Few studies have investigated the prognostic factors of CHCC-CCA. Therefore, this study aimed to establish a nomogram to evaluate the risk of microvascular invasion (MVI) and the presence of satellite nodules and lymph node metastasis (LNM), which are associated with prognosis.

METHODS

One hundred and seventy-one patients pathologically diagnosed with CHCC-CCA were divided into a training set (n=116) and validation set (n=55). Logistic regression analysis was used to assess the relative value of clinical factors associated with the presence of MVI and satellite nodules. The least absolute shrinkage and selection operator (LASSO) algorithm was used to establish the imaging model of all outcomes, and to build clinical model of LNM. Nomograms were constructed by incorporating clinical risk factors and imaging features. The model performance was evaluated on the training and validation sets to determine its discrimination ability, calibration, and clinical utility. Kaplan Meier analysis and time dependent receiver operating characteristic (ROC) were displayed to evaluate the prognosis value of the predicted nomograms of MVI and satellite nodule.

RESULTS

A nomogram comprising the platelet to lymphocyte ratio (PLR), albumin-to-alkaline phosphatase ratio (AAPR) and imaging model was established for the prediction of MVI. Carcinoembryonic antigen (CEA) level and size were combined with the imaging model to establish a nomogram for the prediction of the presence of satellite nodules. Favorable calibration and discrimination were observed in the training and validation sets for the MVI nomogram (C-indexes of 0.857 and 0.795), the nomogram for predicting satellite nodules (C-indexes of 0.919 and 0.883) and the LNM nomogram (C-indexes of 0.872 and 0.666). Decision curve analysis (DCA) further confirmed the clinical utility of the nomograms. The preoperatively predicted MVI and satellite nodules by the combined nomograms achieved satisfactory performance in recurrence-free survival (RFS) and overall survival (OS) prediction.

CONCLUSIONS

The proposed nomograms incorporating clinical risk factors and imaging features achieved satisfactory performance for individualized preoperative predictions of MVI, the presence of satellite nodules, and LNM. The prediction models were demonstrated to be good indicator for predicting the prognosis of CHCC-CCA, facilitating treatment strategy optimization for patients with CHCC-CCA.

摘要

背景

肝内胆管癌合并肝细胞癌(CHCC-CCA)是一种具有侵袭性的罕见原发性肝癌类型。很少有研究探讨CHCC-CCA的预后因素。因此,本研究旨在建立一种列线图,以评估与预后相关的微血管侵犯(MVI)、卫星结节及淋巴结转移(LNM)的风险。

方法

171例经病理诊断为CHCC-CCA的患者被分为训练集(n=116)和验证集(n=55)。采用逻辑回归分析评估与MVI和卫星结节存在相关的临床因素的相对价值。使用最小绝对收缩和选择算子(LASSO)算法建立所有结局的影像模型,并构建LNM的临床模型。通过纳入临床危险因素和影像特征构建列线图。在训练集和验证集上评估模型性能,以确定其区分能力、校准度和临床实用性。采用Kaplan-Meier分析和时间依赖性受试者工作特征(ROC)曲线评估预测MVI和卫星结节的列线图的预后价值。

结果

建立了一个包含血小板与淋巴细胞比值(PLR)、白蛋白与碱性磷酸酶比值(AAPR)和影像模型的列线图,用于预测MVI。将癌胚抗原(CEA)水平和肿瘤大小与影像模型相结合,建立了一个预测卫星结节存在情况的列线图。在训练集和验证集中,MVI列线图(C指数分别为0.857和0.795)、预测卫星结节的列线图(C指数分别为0.919和0.883)以及LNM列线图(C指数分别为0.872和0.666)均表现出良好的校准度和区分能力。决策曲线分析(DCA)进一步证实了列线图的临床实用性。联合列线图术前预测的MVI和卫星结节在无复发生存期(RFS)和总生存期(OS)预测方面表现令人满意。

结论

所提出的纳入临床危险因素和影像特征的列线图在个体化术前预测MVI、卫星结节存在情况和LNM方面表现令人满意。这些预测模型被证明是预测CHCC-CCA预后的良好指标,有助于优化CHCC-CCA患者的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1b1/8576707/89345228e8f4/atm-09-20-1518-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验