Suppr超能文献

基于快速傅里叶变换分析颈椎后路减压术中声音信号的电机钻磨状态识别。

Motor Bur Milling State Identification via Fast Fourier Transform Analyzing Sound Signal in Cervical Spine Posterior Decompression Surgery.

机构信息

Department of Orthopaedics Surgery, Tianjin Medical University General Hospital, Tianjin, China.

Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China.

出版信息

Orthop Surg. 2021 Dec;13(8):2382-2395. doi: 10.1111/os.13168. Epub 2021 Nov 17.

Abstract

OBJECTIVES

To investigate the real-time sensitive feedback parameter of the motor bur milling state in cervical spine posterior decompression surgery, to possibly improve the safety of cervical spine posterior decompression and robot-assisted spinal surgeries.

METHODS

In this study, the cervical spine of three healthy male and three healthy female pigs were randomly selected. Six porcine cervical spine specimens were fixed to the vibration isolation system. The milling state of the motor bur was defined as the lamina cancellous bone (CA), lamina ventral corticalbone (VCO), and penetrating ventral cortical bone (PVCO). A 5-mm bur milled the CA and VCO, and a 2-mm bur milled the VCO and PVCO. A miniature microphone was used to collect the sound signal (SS) of milling lamina which was then extracted using Fast Fourier Transform (FFT). When using 5-mm and 2-mm bur to mill, the CA, VCO, and PVCO of each specimen were continuously collected at 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 kHz frequencies for SS magnitudes. The study randomly selected the SS magnitudes of the CA and VCO continuously for 2 s at 1, 2, 3, 4, and 5 kHz frequencies for statistical analyses. When milling the VCO to the PVCO, we randomly collected the SS magnitudes of the VCO for consecutive 2 s and the SS magnitudes of continuous 2 s in the penetrating state at 1, 2, 3, 4, and 5 kHz frequencies for statistical analyses. The independent sample t-test was used to compare the SS magnitudes of different milling states extracted from the FFT to determine the motor bur milling state.

RESULTS

The SS magnitudes of the CA and VCO of all specimens extracted from the FFT at 1, 2, and 3 kHz were statistically different (P < 0.01); three specimens were not statistically different at a specific FFT-extracted frequency (first specimen at 5 kHz, SS magnitudes of the CA were [25.94 ± 8.74] × 10 , SS magnitudes of the VCO were [28.67 ± 12.94] × 10 , P = 0.440; second specimen at 4 kHz, SS magnitudes of the CA were [23.79 ± 7.94] × 10 , SS magnitudes of the VCO were [24.78 ± 4.32] × 10 , P = 0.629; and third specimen at 5 kHz, SS magnitudes of the CA were [16.76 ± 6.20] × 10 , SS magnitudes of the VCO were [17.69 ± 6.44] × 10 , P = 0.643).The SS magnitudes of the VCO and PVCO of all the specimens extracted from the FFT at each frequency were statistically different (P < 0.001).

CONCLUSIONS

Based on the FFT extraction, the SS magnitudes of the motor bur milling state between the CA and VCO, the VCO and PVCO were significantly different, confirming that the SS is a potential sensitive feedback parameter for identifying the motor bur milling state. This study could improve the safety of cervical spine posterior decompression surgery, especially of robot-assisted surgeries.

摘要

目的

研究颈椎后路减压术中磨钻电机实时敏感反馈参数,以期提高颈椎后路减压和机器人辅助脊柱手术的安全性。

方法

本研究随机选取 3 只健康雄性和 3 只健康雌性猪的颈椎。将 6 个猪颈椎标本固定在振动隔离系统上。将磨钻电机的磨钻状态定义为椎板松质骨(CA)、椎板腹侧皮质骨(VCO)和穿透腹侧皮质骨(PVCO)。用 5mm 磨钻磨 CA 和 VCO,用 2mm 磨钻磨 VCO 和 PVCO。使用微型麦克风收集磨骨的声信号(SS),然后使用快速傅里叶变换(FFT)进行提取。当使用 5mm 和 2mm 磨钻进行磨钻时,连续在 1、2、3、4、5、6、7、8、9 和 10 kHz 频率下收集每个标本的 CA、VCO 和 PVCO 的 SS 幅度。研究随机选择在 1、2、3、4 和 5 kHz 频率下连续 2s 收集 CA 和 VCO 的 SS 幅度进行统计分析。当磨 VCO 到 PVCO 时,我们随机收集连续 2s 的 VCO 的 SS 幅度和穿透状态下连续 2s 的 SS 幅度在 1、2、3、4 和 5 kHz 频率下进行统计分析。独立样本 t 检验用于比较从 FFT 中提取的不同磨钻状态的 SS 幅度,以确定磨钻电机的磨钻状态。

结果

FFT 提取的所有标本的 CA 和 VCO 的 SS 幅度在 1、2 和 3 kHz 时均有统计学差异(P<0.01);在特定 FFT 提取频率下,三个标本无统计学差异(第一标本在 5 kHz 时,CA 的 SS 幅度为[25.94±8.74]×10-3,VCO 的 SS 幅度为[28.67±12.94]×10-3,P=0.440;第二标本在 4 kHz 时,CA 的 SS 幅度为[23.79±7.94]×10-3,VCO 的 SS 幅度为[24.78±4.32]×10-3,P=0.629;第三标本在 5 kHz 时,CA 的 SS 幅度为[16.76±6.20]×10-3,VCO 的 SS 幅度为[17.69±6.44]×10-3,P=0.643)。FFT 提取的所有标本的 VCO 和 PVCO 的 SS 幅度在每个频率均有统计学差异(P<0.001)。

结论

基于 FFT 提取,CA 和 VCO 之间、VCO 和 PVCO 之间磨钻电机磨钻状态的 SS 幅度差异有统计学意义,证实 SS 是识别磨钻电机磨钻状态的潜在敏感反馈参数。本研究可提高颈椎后路减压术的安全性,特别是机器人辅助手术的安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de05/8654648/9e6caffda041/OS-13-2382-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验