Zhang Xinggang, Dai Dan
Institute of Physics, Guizhou University, Guiyang, Guizhou, 550025, China.
College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China.
Eur Phys J E Soft Matter. 2021 Nov 18;44(11):140. doi: 10.1140/epje/s10189-021-00145-3.
By investigating the bidisperse disks under isotropic compression, we show the importance of non-affine deformation on the bulk properties of jammed disordered matter and how the mechanical properties are affected by the variation of microscopic quantities with the excess volume density [Formula: see text] and the friction coefficient [Formula: see text]. In theory, we derive a simple formula for the pressure of disk packings which sets up a bridge between the pressure and other statistical quantities like the contact number density and the average normal force. This pressure formula is used to derive the reduced pressure [Formula: see text] and the reduced bulk modulus [Formula: see text] for disk packings with linear interactions and under affine compression without new contacts. Combining theoretical formulae with Discrete Element Method (DEM) simulations, we investigate the average contact number [Formula: see text] and the average reduced overlap [Formula: see text] and give the analysis on how [Formula: see text] and [Formula: see text] are affected by the variation of Z and [Formula: see text]. For frictionless disk packings, we find that the affine assumption causes large deviation on Z and [Formula: see text] relative to those of non-affine compression and therefore fails to predict the quantitative results of [Formula: see text]. For packings with a fixed [Formula: see text], due to the non-affine deformation, [Formula: see text] varies approximately linear with the increasing [Formula: see text] and Z increases sharply near the jamming point and then approaches a saturation value. With a fixed [Formula: see text] and the increasing [Formula: see text], [Formula: see text] changes by a small amount while Z presents obvious decrease. The decrease of Z causes the decrease of the slope of function [Formula: see text] and the value of [Formula: see text] at a fixed [Formula: see text].
通过研究各向同性压缩下的双分散圆盘,我们展示了非仿射变形对堵塞无序物质整体性质的重要性,以及力学性质如何受到微观量(过剩体积密度[公式:见原文]和摩擦系数[公式:见原文])变化的影响。在理论上,我们推导了圆盘堆积压力的一个简单公式,该公式在压力与其他统计量(如接触数密度和平均法向力)之间建立了桥梁。这个压力公式用于推导具有线性相互作用且在无新接触的仿射压缩下圆盘堆积的约化压力[公式:见原文]和约化体积模量[公式:见原文]。将理论公式与离散元方法(DEM)模拟相结合,我们研究了平均接触数[公式:见原文]和平均约化重叠[公式:见原文],并分析了[公式:见原文]和[公式:见原文]如何受到Z和[公式:见原文]变化的影响。对于无摩擦圆盘堆积,我们发现仿射假设相对于非仿射压缩在Z和[公式:见原文]上会导致较大偏差,因此无法预测[公式:见原文]的定量结果。对于具有固定[公式:见原文]的堆积,由于非仿射变形,[公式:见原文]随[公式:见原文]的增加近似线性变化,并且Z在堵塞点附近急剧增加,然后趋近于一个饱和值。在固定[公式:见原文]且[公式:见原文]增加时,[公式:见原文]变化很小而Z呈现明显下降。Z的下降导致函数[公式:见原文]在固定[公式:见原文]时斜率和[公式:见原文]值的下降。