Suppr超能文献

通过压缩和后选择生成格林伯格-霍恩-蔡林格态

Generating Greenberger-Horne-Zeilinger states with squeezing and postselection.

作者信息

Alexander Byron, Bollinger John J, Uys Hermann

机构信息

Department of Physics, Stellenbosch University, Stellenbosch Central 7600, Stellenbosch, South Africa.

National Institute of Standards and Technology, Boulder, Colorado 80305, USA.

出版信息

Phys Rev A (Coll Park). 2020 Jun;101(6). doi: 10.1103/PhysRevA.101.062303.

Abstract

Many quantum state preparation methods rely on a combination of dissipative quantum state initialization followed by unitary evolution to a desired target state. Here we demonstrate the usefulness of quantum measurement as an additional tool for quantum state preparation. Starting from a pure separable multipartite state, a control sequence, which includes rotation, spin squeezing via one-axis twisting, quantum measurement, and postselection, generates highly entangled multipartite states, which we refer to as (PS) states. Through an optimization method, we then identify parameters required to maximize the overlap fidelity of the PS states with the maximally entangled Greenberger-Horne-Zeilinger (GHZ) states. The method leads to an appreciable decrease in the state preparation time of GHZ states for successfully postselected outcomes when compared to preparation through unitary evolution with one-axis twisting only.

摘要

许多量子态制备方法依赖于耗散量子态初始化与酉演化相结合,以达到期望的目标态。在此,我们展示了量子测量作为量子态制备的额外工具的有用性。从一个纯可分多体态开始,一个控制序列,包括旋转、通过单轴扭转实现的自旋压缩、量子测量和后选择,生成高度纠缠的多体态,我们将其称为(PS)态。然后,通过一种优化方法,我们确定了使PS态与最大纠缠的格林伯格 - 霍恩 - 泽林格(GHZ)态的重叠保真度最大化所需的参数。与仅通过单轴扭转的酉演化进行制备相比,该方法在成功进行后选择的结果时,显著减少了GHZ态的态制备时间。

相似文献

1
Generating Greenberger-Horne-Zeilinger states with squeezing and postselection.
Phys Rev A (Coll Park). 2020 Jun;101(6). doi: 10.1103/PhysRevA.101.062303.
2
Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables.
Phys Rev Lett. 2007 Feb 16;98(7):070502. doi: 10.1103/PhysRevLett.98.070502. Epub 2007 Feb 14.
3
Observation of quantum nonlocality in Greenberger-Horne-Zeilinger entanglement on a silicon chip.
Opt Express. 2024 Apr 22;32(9):14904-14913. doi: 10.1364/OE.515070.
4
Fast and Accurate Greenberger-Horne-Zeilinger Encoding Using All-to-All Interactions.
Phys Rev Lett. 2025 Apr 4;134(13):130604. doi: 10.1103/PhysRevLett.134.130604.
5
Quantum Entanglement Swapping between Two Multipartite Entangled States.
Phys Rev Lett. 2016 Dec 9;117(24):240503. doi: 10.1103/PhysRevLett.117.240503. Epub 2016 Dec 6.
6
Generation and applications of an ultrahigh-fidelity four-photon Greenberger-Horne-Zeilinger state.
Opt Express. 2016 Nov 28;24(24):27059-27069. doi: 10.1364/OE.24.027059.
7
Quantum-Memory-Enhanced Preparation of Nonlocal Graph States.
Phys Rev Lett. 2022 Feb 25;128(8):080501. doi: 10.1103/PhysRevLett.128.080501.
8
Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors.
Nat Commun. 2024 Oct 12;15(1):8823. doi: 10.1038/s41467-024-53140-5.
9
One-step synthesis of multiatom Greenberger-Horne-Zeilinger states.
Phys Rev Lett. 2001 Dec 3;87(23):230404. doi: 10.1103/PhysRevLett.87.230404. Epub 2001 Nov 16.
10
Photonic Source of Heralded Greenberger-Horne-Zeilinger States.
Phys Rev Lett. 2024 Mar 29;132(13):130604. doi: 10.1103/PhysRevLett.132.130604.

本文引用的文献

1
Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits.
Science. 2019 Aug 9;365(6453):574-577. doi: 10.1126/science.aay0600.
2
Generation and manipulation of Schrödinger cat states in Rydberg atom arrays.
Science. 2019 Aug 9;365(6453):570-574. doi: 10.1126/science.aax9743.
4
Painting Nonclassical States of Spin or Motion with Shaped Single Photons.
Phys Rev Lett. 2018 Sep 21;121(12):123602. doi: 10.1103/PhysRevLett.121.123602.
5
18-Qubit Entanglement with Six Photons' Three Degrees of Freedom.
Phys Rev Lett. 2018 Jun 29;120(26):260502. doi: 10.1103/PhysRevLett.120.260502.
6
Entanglement-Enhanced Radio-Frequency Field Detection and Waveform Sensing.
Phys Rev Lett. 2017 Jul 28;119(4):043603. doi: 10.1103/PhysRevLett.119.043603. Epub 2017 Jul 25.
7
Cavity Carving of Atomic Bell States.
Phys Rev Lett. 2017 May 26;118(21):210503. doi: 10.1103/PhysRevLett.118.210503.
8
Experimental Ten-Photon Entanglement.
Phys Rev Lett. 2016 Nov 18;117(21):210502. doi: 10.1103/PhysRevLett.117.210502. Epub 2016 Nov 15.
9
Deterministic Squeezed States with Collective Measurements and Feedback.
Phys Rev Lett. 2016 Mar 4;116(9):093602. doi: 10.1103/PhysRevLett.116.093602.
10
Measurement noise 100 times lower than the quantum-projection limit using entangled atoms.
Nature. 2016 Jan 28;529(7587):505-8. doi: 10.1038/nature16176. Epub 2016 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验