Diez-Cabanes Valentin, Morales-García Ángel, Illas Francesc, Pastore Mariachiara
Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR 7019, F-54000 Nancy, France.
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franqués 1-11, 08028 Barcelona, Spain.
J Phys Chem Lett. 2021 Dec 2;12(47):11528-11533. doi: 10.1021/acs.jpclett.1c03227. Epub 2021 Nov 19.
Nowadays, semiconducting heterojunction-based devices exhibit the best photocatalytic performance, with transition metal oxides such as tungsten (WO) and titanium (TiO) being the workhorse materials employed in these composites. Contrary to their bulk counterparts, WO and TiO nanostructures offer a huge versatility because their optoelectronic properties (i.e., energy levels) can be tuned by modifying their size, morphology, and composition, thus being, in principle, able to optimize the electron/hole injection barriers inside the device. However, this approach requires a deep fundamental knowledge of their structure-property relationships, which are extremely difficult to access from experiments. In this context, we employed state-of-the-art theoretical methods to determine the size and morphology dependency of the energetic alignment in WO/WO and TiO/WO nanostructure heterojunctions. Our results demonstrated that any type of alignment can be achieved by the proper choice of the nanostructures involved in the junction, while setting important rules for the design of efficient multicomponent devices.
如今,基于半导体异质结的器件展现出最佳的光催化性能,其中诸如钨(WO)和钛(TiO)等过渡金属氧化物是这些复合材料中使用的主要材料。与它们的块状对应物不同,WO和TiO纳米结构具有极大的通用性,因为它们的光电特性(即能级)可以通过改变其尺寸、形态和组成来调节,因此原则上能够优化器件内部的电子/空穴注入势垒。然而,这种方法需要对它们的结构-性能关系有深入的基础知识,而从实验中极难获得这些知识。在此背景下,我们采用了最先进的理论方法来确定WO/WO和TiO/WO纳米结构异质结中能量排列的尺寸和形态依赖性。我们的结果表明,通过适当选择结中涉及的纳米结构,可以实现任何类型的排列,同时为高效多组分器件的设计设定了重要规则。