Suppr超能文献

用于图像恢复的交互式多维调制

Interactive Multi-Dimension Modulation for Image Restoration.

作者信息

He Jingwen, Dong Chao, Liu Yihao, Qiao Yu

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9363-9379. doi: 10.1109/TPAMI.2021.3129345. Epub 2022 Nov 7.

Abstract

Interactive image restoration aims to generate restored images by adjusting a controlling coefficient which determines the restoration level. Previous works are restricted in modulating image with a single coefficient. However, real images always contain multiple types of degradation, which cannot be well determined by one coefficient. To make a step forward, this paper presents a new problem setup, called multi-dimension (MD) modulation, which aims at modulating output effects across multiple degradation types and levels. Compared with the previous single-dimension (SD) modulation, the MD setup to handle multiple degradations adaptively and relief data unbalancing problem in different degradation types. We also propose a deep architecture - CResMD with newly introduced controllable residual connections for multi-dimension modulation. Specifically, we add a controlling variable on the conventional residual connection to allow a weighted summation of input and residual. The values of these weights are generated by another condition network. We further propose a new data sampling strategy based on beta distribution together with a simple loss reweighting approach to balance different degradation types and levels. With corrupted image and degradation information as inputs, the network can output the corresponding restored image. By tweaking the condition vector, users can control the output effects in MD space at test time. Moreover, we also provide an estimation network to predict the condition vector, thus the base network could directly output the restored image without modulation from users. Extensive experiments demonstrate that the proposed CResMD achieves excellent performance on both SD and MD modulation tasks.

摘要

交互式图像恢复旨在通过调整一个决定恢复程度的控制系数来生成恢复后的图像。以往的工作局限于用单个系数来调制图像。然而,真实图像总是包含多种类型的退化,仅用一个系数无法很好地确定这些退化。为了取得进一步进展,本文提出了一种新的问题设置,称为多维(MD)调制,其目的是跨多种退化类型和程度来调制输出效果。与之前的单维(SD)调制相比,MD设置能够自适应地处理多种退化,并缓解不同退化类型中的数据不平衡问题。我们还提出了一种深度架构——CResMD,它具有新引入的用于多维调制的可控残差连接。具体来说,我们在传统残差连接上添加一个控制变量,以允许对输入和残差进行加权求和。这些权重的值由另一个条件网络生成。我们进一步提出了一种基于贝塔分布的新数据采样策略以及一种简单的损失重新加权方法,以平衡不同的退化类型和程度。以损坏的图像和退化信息作为输入,该网络可以输出相应的恢复图像。通过调整条件向量,用户在测试时可以在MD空间中控制输出效果。此外,我们还提供了一个估计网络来预测条件向量,这样基础网络就可以直接输出恢复后的图像,而无需用户进行调制。大量实验表明,所提出的CResMD在SD和MD调制任务上均取得了优异的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验