Beer Patrick, Reichstein Paul M, Schötz Konstantin, Raithel Dominic, Thelakkat Mukundan, Köhler Jürgen, Panzer Fabian, Hildner Richard
Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany.
Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth, Germany.
J Phys Chem A. 2021 Dec 2;125(47):10165-10173. doi: 10.1021/acs.jpca.1c08377. Epub 2021 Nov 19.
We employ photoluminescence (PL) spectroscopy on individual nanoscale aggregates of the conjugated polymer poly(3-hexylthiophene), P3HT, at room temperature (RT) and at low temperature (LT) (1.5 K), to unravel different levels of structural and electronic disorder within P3HT nanoparticles. The aggregates are prepared by self-assembly of the block copolymer P3HT--poly(ethylene glycol) (P3HT--PEG) into micelles, with the P3HT aggregates constituting the micelles' core. Irrespective of temperature, we find from the intensity ratio between the 0-1 and 0-0 peaks in the PL spectra that the P3HT aggregates are of H-type nature, as expected from π-stacked conjugated thiophene backbones. Moreover, the distributions of the PL peak ratios demonstrate a large variation of disorder between micelles (inter-aggregate disorder) and within individual aggregates (intra-aggregate disorder). Upon cooling from RT to LT, the PL spectra red-shift by 550 cm, and the energy of the (effective) carbon-bond stretch mode is reduced by 100 cm. These spectral changes indicate that the P3HT backbone in the P3HT--PEG copolymer does not fully planarize before aggregation at RT and that upon cooling, partial planarization occurs. This intra-chain torsional disorder is ultimately responsible for the intra- and inter-aggregate disorder. These findings are supported by temperature-dependent absorption spectra on thin P3HT films. The interplay between intra-chain, intra-aggregate, and inter-aggregate disorder is key for the bulk photophysical properties of nanoparticles based on conjugated polymers, for example, in hierarchical (super-) structures. Ultimately, these properties determine the usefulness of such structures in hybrid organic-inorganic materials, for example, in (bio-)sensing and optoelectronics applications.
我们在室温(RT)和低温(LT)(1.5 K)下,对共轭聚合物聚(3 - 己基噻吩)(P3HT)的单个纳米级聚集体进行光致发光(PL)光谱分析,以揭示P3HT纳米颗粒内不同程度的结构和电子无序。这些聚集体是通过嵌段共聚物P3HT - 聚(乙二醇)(P3HT - PEG)自组装成胶束而制备的,其中P3HT聚集体构成胶束的核心。无论温度如何,我们从PL光谱中0 - 1和0 - 0峰之间的强度比发现,P3HT聚集体具有H型性质,这与π堆积共轭噻吩主链的预期一致。此外,PL峰比的分布表明胶束之间(聚集体间无序)和单个聚集体内部(聚集体内无序)的无序程度有很大差异。从室温冷却到低温时,PL光谱红移550 cm,(有效)碳 - 碳键拉伸模式的能量降低100 cm。这些光谱变化表明,P3HT - PEG共聚物中的P3HT主链在室温下聚集之前没有完全平面化,而在冷却时会发生部分平面化。这种链内扭转无序最终导致了聚集体内和聚集体间的无序。这些发现得到了P3HT薄膜的温度依赖吸收光谱的支持。链内、聚集体内和聚集体间无序之间的相互作用是基于共轭聚合物的纳米颗粒整体光物理性质的关键,例如在分级(超)结构中。最终,这些性质决定了这种结构在有机 - 无机杂化材料中的实用性,例如在(生物)传感和光电子应用中。