Photosciences and Photonics Section, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Photosciences and Photonics Section, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
J Photochem Photobiol B. 2022 Jan;226:112352. doi: 10.1016/j.jphotobiol.2021.112352. Epub 2021 Nov 1.
DNA nanotechnology propose various assembly strategies to develop novel functional nanostructures utilizing unique interactions of DNA with small molecules, nanoparticles, polymers, and other biomolecules. Although, well defined nanostructures of DNA and amphiphilic small molecules were achieved through hybridization of covalently modified DNA, attaining precise organization of functional moieties through non-covalent interactions remain as a challenging task. Herein, we report mutually assisted assembly of an amphiphilic fullerene derivative and various DNA structures through non-covalent interactions, which leads to initial DNA condensation and subsequent assembly yielding ordered fullerene-DNA nanosheets. The molecular design of the cationic, amphiphilic fullerene derivative (FPy) ensures molecular solubility in the 10% DMSO-PBS buffer system and facile interactions with DNA through groove binding and electrostatic interactions of fullerene moiety and positively charged pyridinium moiety, respectively. The formation of FPy/DNA nanostructures were thoroughly investigated in the presence of λ-DNA, pBR322 plasmid DNA, and single and double stranded 20-mer oligonucleotides using UV-visible spectroscopy, AFM and TEM analysis. λ-DNA and pBR322 plasmid DNA readily condense in presence of FPy leading to micrometer sized few layer nanosheets with significant crystallinity due to ordered arrangement of fullerenes. Similarly, single and double stranded 20-mer oligonucleotides also interact efficiently with FPy and form highly crystalline nanosheets, signifying the role of electrostatic interaction and subsequent charge neutralization in the condensation triggered assembly. However, there is significant differences in the crystallinity and ordered arrangements of fullerenes between these two cases, where longer DNA form condensed structures and less ordered nanosheets while short oligonucleotides lead to more ordered and highly crystalline nanosheets, which could be attributed to the differential DNA condensation. Finally, we have demonstrated the addressability of the assembly using a cyanine modified single strand DNA, which also forms highly crystalline nanosheets and exhibit efficient quenching of the cyanine fluorescence upon self-assembly. These results open up new prospects in the development of functional DNA nanostructures through non-covalent interactions and hence have potential applications in the context of DNA nanotechnology.
DNA 纳米技术提出了各种组装策略,利用 DNA 与小分子、纳米粒子、聚合物和其他生物分子的独特相互作用,开发新型功能纳米结构。虽然通过共价修饰 DNA 的杂交已经实现了 well defined nanostructures of DNA 和两亲小分子,但通过非共价相互作用实现功能部分的精确组织仍然是一项具有挑战性的任务。在此,我们报告了通过非共价相互作用实现两亲富勒烯衍生物和各种 DNA 结构的相互辅助组装,这导致初始 DNA 凝聚和随后的组装产生有序的富勒烯-DNA 纳米片。阳离子两亲富勒烯衍生物(FPy)的分子设计确保了在 10% DMSO-PBS 缓冲系统中的分子溶解度,并通过富勒烯部分和带正电荷的吡啶部分的沟槽结合和静电相互作用分别与 DNA 进行简便的相互作用。使用 UV-可见光谱、AFM 和 TEM 分析,在 λ-DNA、pBR322 质粒 DNA 以及单链和双链 20 聚核苷酸存在的情况下,深入研究了 FPy/DNA 纳米结构的形成。FPy 容易与 λ-DNA 和 pBR322 质粒 DNA 凝聚,导致微米级的几层纳米片具有显著的结晶度,这是由于富勒烯的有序排列。同样,单链和双链 20 聚核苷酸也与 FPy 有效相互作用并形成高度结晶的纳米片,这表明静电相互作用和随后的电荷中和在引发的凝聚组装中起作用。然而,在这两种情况下,富勒烯的结晶度和有序排列有显著差异,其中较长的 DNA 形成凝聚结构和较少有序的纳米片,而较短的寡核苷酸导致更有序和高度结晶的纳米片,这归因于 DNA 的不同凝聚。最后,我们使用氰基修饰的单链 DNA 证明了组装的可寻址性,该 DNA 也形成高度结晶的纳米片,并在自组装时表现出氰基荧光的有效猝灭。这些结果为通过非共价相互作用开发功能 DNA 纳米结构开辟了新的前景,因此在 DNA 纳米技术方面具有潜在的应用。