Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Sci Total Environ. 2022 Apr 20;818:151776. doi: 10.1016/j.scitotenv.2021.151776. Epub 2021 Nov 18.
The use of vacuum-UV/UV (185/254 nm) for trace organic contaminants (TOrCs) elimination during wastewater treatments has attracted much attention. Advanced oxidation processes which combine VUV/UV and additional oxidants (vacuum-UV/UV-based advanced oxidation processes, VUV/UV-AOPs) provide a promising method for eliminating recalcitrant and toxic TOrCs for wastewater reclamation. Researches in this area are increasing but the promoting effects, mechanisms, and influencing factors have not been well summarized. A comprehensive discussion of the limitations of this technique and future research directions is needed. VUV/UV-AOPs have considerable synergistic effects by increasing usage of VUV/UV photons and the oxidant, which increases radical generation. In terms of elimination kinetics, VUV/UV-AOPs outperform conventional UV-AOPs and VUV/UV processes in most cases; a 1.2-87.7-fold increase of the fluence-based kinetic constant is achieved. In terms of energy efficiency per order (EE/O) of TOrCs elimination, the EE/O of VUV/UV-AOPs only accounts for 4% of UV-AOPs and 63% of VUV/UV. However, VUV/UV-AOPs still need to be further investigated. Firstly, although VUV and UV processes have similar radical formation pathways, limited information is available on the quantum yields of photolysis and radical formation of oxidants under VUV irradiation. Secondly, optimization of VUV/UV-AOPs operating conditions, especially oxidant dosage and water-flow patterns, is needed. Thirdly, VUV/UV-AOPs are significantly inhibited by organic and inorganic matters, but the mechanisms of inhibition on VUV/UV scattering, radical quenching, and radical conversion are not well understood. Such inhibition suggests that the use of VUV/UV-AOPs would be limited to relatively clear water treatment, e.g., reverse osmosis effluent for potable water reuse and ultrapure water production. Related research is needed to establish a clearer scheme for VUV/UV-AOPs in terms of the spatial distribution of radical species in the VUV/UV irradiation system and the relevant optimization method for promoting oxidation performance.
真空紫外线/紫外线(185/254nm)在废水处理中用于去除痕量有机污染物(TOrCs)已引起广泛关注。将 VUV/UV 与其他氧化剂相结合的高级氧化工艺(真空紫外线/紫外线基高级氧化工艺,VUV/UV-AOPs)为去除废水回用时的难降解和有毒 TOrCs 提供了一种很有前途的方法。该领域的研究在不断增加,但促进作用、机制和影响因素尚未得到很好的总结。需要对该技术的局限性和未来的研究方向进行全面讨论。VUV/UV-AOPs 通过增加 VUV/UV 光子和氧化剂的使用,增加自由基的生成,从而产生相当大的协同作用。在去除动力学方面,在大多数情况下,VUV/UV-AOPs 优于传统的 UV-AOPs 和 VUV/UV 工艺;辐照剂量基动力学常数提高了 1.2-87.7 倍。在 TOrCs 去除的每一级能量效率(EE/O)方面,VUV/UV-AOPs 的 EE/O 仅占 UV-AOPs 的 4%和 VUV/UV 的 63%。然而,VUV/UV-AOPs 仍需进一步研究。首先,尽管 VUV 和 UV 工艺具有相似的自由基形成途径,但在 VUV 辐照下,光解和氧化剂自由基形成的量子产率的信息有限。其次,需要优化 VUV/UV-AOPs 的操作条件,特别是氧化剂用量和水流模式。第三,VUV/UV-AOPs 受到有机物和无机物的显著抑制,但 VUV/UV 散射、自由基猝灭和自由基转化的抑制机制尚不清楚。这种抑制表明,VUV/UV-AOPs 的使用将限于相对清澈的水处理,例如反渗透出水的饮用水再利用和超纯水生产。需要进行相关研究,为 VUV/UV-AOPs 建立一个更清晰的方案,包括 VUV/UV 辐照系统中自由基物种的空间分布以及促进氧化性能的相关优化方法。