Suppr超能文献

采用神经网络机器学习原子间势对金属 Al-Ce 液体的分子动力学模拟。

Molecular dynamics simulation of metallic Al-Ce liquids using a neural network machine learning interatomic potential.

机构信息

Department of Applied Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China.

Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011, USA.

出版信息

J Chem Phys. 2021 Nov 21;155(19):194503. doi: 10.1063/5.0066061.

Abstract

Al-rich Al-Ce alloys have the possibility of replacing heavier steel and cast irons for use in high-temperature applications. Knowledge about the structures and properties of Al-Ce alloys at the liquid state is vital for optimizing the manufacture process to produce desired alloys. However, reliable molecular dynamics simulation of Al-Ce alloy systems remains a great challenge due to the lack of accurate Al-Ce interatomic potential. Here, an artificial neural network (ANN) deep machine learning (ML) method is used to develop a reliable interatomic potential for Al-Ce alloys. Ab initio molecular dynamics simulation data on the Al-Ce liquid with a small unit cell (∼200 atoms) and on the known Al-Ce crystalline compounds are collected to train the interatomic potential using ANN-ML. The obtained ANN-ML model reproduces well the energies, forces, and atomic structure of the AlCe liquid and crystalline phases of Al-Ce compounds in comparison with the ab initio results. The developed ANN-ML potential is applied in molecular dynamics simulations to study the structures and properties of the metallic AlCe liquid, which would provide useful insight into the guiding experimental process to produce desired Al-Ce alloys.

摘要

富铝 Al-Ce 合金有可能替代更重的钢和铸铁,用于高温应用。了解液态 Al-Ce 合金的结构和性能对于优化制造工艺以生产所需的合金至关重要。然而,由于缺乏精确的 Al-Ce 原子间势,可靠的 Al-Ce 合金分子动力学模拟仍然是一个巨大的挑战。在这里,使用人工神经网络 (ANN) 深度学习 (ML) 方法来为 Al-Ce 合金开发可靠的原子间势。使用 ANN-ML 收集关于具有小单元(~200 个原子)的 Al-Ce 液态和已知 Al-Ce 晶态化合物的从头算分子动力学模拟数据,以训练原子间势。与从头算结果相比,所获得的 ANN-ML 模型很好地再现了 AlCe 液态和 Al-Ce 化合物晶相的能量、力和原子结构。所开发的 ANN-ML 势用于分子动力学模拟,以研究金属 AlCe 液体的结构和性能,这将为指导生产所需 Al-Ce 合金的实验过程提供有用的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验