School of Environment, Northeast Normal University, Changchun 130117, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
School of Environment, Northeast Normal University, Changchun 130117, PR China.
Sci Total Environ. 2022 Apr 20;818:151761. doi: 10.1016/j.scitotenv.2021.151761. Epub 2021 Nov 18.
A series of Brønsted acidic ionic liquids (BAILs) functionalized hollow organosilica nanospheres ([CIm][OTs/OTf]-Si(Et)Si, C = Pr/BuSOH) were synthesized by two steps. The process involved the preparation of hollow nanosphere supports via a toluene-swollen sol-gel co-condensation of 1,2-bis(trimethoxysilyl)ethane and 3-chloropropyltriethoxysilane in the presence of F127, and followed by a successive quaternary ammonization and protonation with imidazole, 1,3-propane/1,4-butane sultone and trifluoromethane sulfonic acid/p-toluenesulfonic acid. The adjustable acid property, hollow inner diameter (5-15 nm) and shell thickness (5-9 nm) of [CIm][OTs/OTf]-Si(Et)Si are achieved by introducing different organic acids and controlling toluene concentration, respectively. The [CIm][OTs/OTf]-Si(Et)Si were applied in selective conversion of fructose to 5-hydroxymethylfurfural (HMF) and 5-ethoxymethylfurfural (EMF) under microwave heating. Under the optimized conditions, the [CIm][OTs]-Si(Et)Si3.0 nanospheres with the largest inner diameter and the smallest shell thickness exhibit the highest HMF yield (79.4%, 15 min) in fructose dehydration. And the [CIm][OTf]-Si(Et)Si0.5 nanospheres with the highest acid strength possess the highest EMF yield (70.4%, 30 min) in fructose ethanolysis. The high Brønsted acid-site density and acid strength of [CIm][OTs/OTf]-Si(Et)Si catalysts accompanied by high microwave heating energy lead to excellent dehydration/ethanolysis activity. The product selectivity strongly depended on the BAILs structures and morphological characteristics of the catalyst. More importantly, the [CIm][OTs/OTf]-Si(Et)Si can be reused three times without changes in leaching of BAILs, due to strong covalent bond between BAILs and silicon/carbon framework. This work will provide a simple strategy of chemically bonded BAILs on suitable supports as efficient solid acids, and an approach of combining morphology-controlled solid acids with microwave-heating for catalytic conversion of biomass/derivatives to fuels and value-added chemicals.
一系列 Brønsted 酸性离子液体(BAILs)功能化的中空有机硅纳米球([CIm][OTs/OTf]-Si(Et)Si,C = Pr/BuSOH)通过两步法合成。该过程涉及通过甲苯溶胀溶胶-凝胶共缩合 1,2-双(三甲氧基硅基)乙烷和 3-氯丙基三乙氧基硅烷,在 F127 的存在下制备中空纳米球载体,然后通过季铵化和质子化与咪唑、1,3-丙烷/1,4-丁烷砜和三氟甲磺酸/对甲苯磺酸进行连续反应。通过引入不同的有机酸和控制甲苯浓度,分别实现了 [CIm][OTs/OTf]-Si(Et)Si 的可调酸性质、中空内径(5-15nm)和壳厚(5-9nm)。[CIm][OTs/OTf]-Si(Et)Si 在微波加热下用于果糖选择性转化为 5-羟甲基糠醛(HMF)和 5-乙氧基甲基糠醛(EMF)。在优化条件下,具有最大内径和最小壳厚的[CIm][OTs]-Si(Et)Si3.0 纳米球在果糖脱水反应中表现出最高的 HMF 产率(79.4%,15min)。而具有最高酸强度的[CIm][OTf]-Si(Et)Si0.5 纳米球在果糖乙醇解反应中具有最高的 EMF 产率(70.4%,30min)。[CIm][OTs/OTf]-Si(Et)Si 催化剂具有高的 Brønsted 酸位密度和酸强度以及高的微波加热能量,导致其具有优异的脱水/乙醇解活性。产物选择性强烈依赖于 BAILs 结构和催化剂的形态特征。更重要的是,由于 BAILs 与硅/碳骨架之间存在强共价键,[CIm][OTs/OTf]-Si(Et)Si 可以在不改变 BAILs 浸出的情况下重复使用三次。这项工作为将化学键合的 BAILs 负载在合适的载体上作为高效固体酸提供了一种简单的策略,并为结合形态控制的固体酸和微波加热用于生物质/衍生物转化为燃料和高附加值化学品的催化转化提供了一种方法。