CIDETEC, Instituto Politécnico Nacional, Mexico City, 07700, Mexico.
Instituto de Investigaciones en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
ISA Trans. 2022 Sep;128(Pt A):81-105. doi: 10.1016/j.isatra.2021.10.029. Epub 2021 Nov 10.
This paper proposes the tuning approach of the event-triggered controller (ETCTA) for the robotic system stabilization task where the reduction of the stabilization error and the data broadcasting of the control update are simultaneously considered. This approach is stated as a dynamic optimization problem, and the best controller parameters are obtained by using fourteen different bio-inspired optimization algorithms. The statistics results reveal that, among the tested bio-inspired optimization algorithms, the most reliable algorithm in the proposed tuning problem is the differential evolution variant DE/Best/1/Exp. The obtained result is validated both in numerical simulation as well as using a laboratory prototype. The simulation results indicate that the obtained control parameters can also deal with disturbances and reference changes not considered in the ETCTA's optimization problem formulation without significantly worsening the control design objective. Experimental results disclose that the proposed event-triggered control tuning approach provides the best trade-off between the number of control signal updates and the position error among other tuning approaches, decreasing the data broadcasting of the control update by around 86.33% with a non-significant increase in the stabilization error of around 26.53%.
本文提出了一种事件触发控制器(ETCTA)的调谐方法,用于机器人系统稳定化任务,同时考虑了稳定化误差的减小和控制更新的数据广播。该方法被表述为一个动态优化问题,并使用 14 种不同的生物启发式优化算法来获得最佳的控制器参数。统计结果表明,在所测试的生物启发式优化算法中,在提出的调谐问题中最可靠的算法是差分进化变体 DE/Best/1/Exp。所得到的结果在数值模拟和实验室原型中都得到了验证。仿真结果表明,所得到的控制参数也可以处理 ETCTA 优化问题公式中未考虑的干扰和参考变化,而不会显著恶化控制设计目标。实验结果表明,与其他调谐方法相比,所提出的事件触发控制调谐方法在控制信号更新次数和位置误差之间提供了最佳的折衷,将控制更新的数据广播减少了约 86.33%,而稳定化误差的增加不超过 26.53%。