Suppr超能文献

基于开放搜索方法的鲍曼不动杆菌 O-连接糖肽鉴定的应用。

The Application of Open Searching-based Approaches for the Identification of Acinetobacter baumannii O-linked Glycopeptides.

机构信息

Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne.

Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne;

出版信息

J Vis Exp. 2021 Nov 2(177). doi: 10.3791/63242.

Abstract

Protein glycosylation is increasingly recognized as a common modification within bacterial organisms, contributing to prokaryotic physiology and optimal infectivity of pathogenic species. Due to this, there is increasing interest in characterizing bacterial glycosylation and a need for high-throughput analytical tools to identify these events. Although bottom-up proteomics readily enables the generation of rich glycopeptide data, the breadth and diversity of glycans observed in prokaryotic species make the identification of bacterial glycosylation events extremely challenging. Traditionally, the manual determination of glycan compositions within bacterial proteomic datasets made this a largely bespoke analysis restricted to field-specific experts. Recently, open searching-based approaches have emerged as a powerful alternative for the identification of unknown modifications. By analyzing the frequency of unique modifications observed on peptide sequences, open searching techniques allow the identification of common glycans attached to peptides within complex samples. This article presents a streamlined workflow for the interpretation and analysis of glycoproteomic data, demonstrating how open searching techniques can be used to identify bacterial glycopeptides without prior knowledge of the glycan compositions. Using this approach, glycopeptides within samples can rapidly be identified to understand glycosylation differences. Using Acinetobacter baumannii as a model, these approaches enable the comparison of glycan compositions between strains and the identification of novel glycoproteins. Taken together, this work demonstrates the versatility of open database-searching techniques for the identification of bacterial glycosylation, making the characterization of these highly diverse glycoproteomes easier than ever before.

摘要

蛋白质糖基化越来越被认为是细菌中常见的修饰方式,有助于原核生物的生理学和致病性物种的最佳感染力。因此,人们对细菌糖基化的特征描述越来越感兴趣,并且需要高通量的分析工具来识别这些事件。虽然自下而上的蛋白质组学可以很容易地产生丰富的糖肽数据,但在原核生物中观察到的聚糖的广度和多样性使得鉴定细菌糖基化事件极具挑战性。传统上,细菌蛋白质组数据集中文本确定糖的组成的方法使得这成为一种主要针对特定领域专家的定制分析。最近,基于开放搜索的方法已经成为鉴定未知修饰的强大替代方法。通过分析肽序列上观察到的独特修饰的频率,开放搜索技术允许在复杂样品中鉴定与肽结合的常见聚糖。本文提出了一种简化的糖蛋白质组学数据分析工作流程,展示了如何在不了解聚糖组成的情况下使用开放搜索技术来鉴定细菌糖肽。使用这种方法,可以快速识别样品中的糖肽,以了解糖基化差异。以鲍曼不动杆菌为模型,这些方法可以比较菌株之间的聚糖组成,并鉴定新的糖蛋白。总之,这项工作证明了开放数据库搜索技术在鉴定细菌糖基化方面的多功能性,使这些高度多样化的糖蛋白组的特征描述比以往任何时候都更容易。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验