Suppr超能文献

鉴定与抗氧化应激和毒力相关的 Dps 样蛋白 FtpA 在胸膜肺炎放线杆菌中的作用。

Identification of FtpA, a Dps-Like Protein Involved in Anti-Oxidative Stress and Virulence in Actinobacillus pleuropneumoniae.

机构信息

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural Universitygrid.35155.37, Wuhan, Hubei, China.

Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.

出版信息

J Bacteriol. 2022 Feb 15;204(2):e0032621. doi: 10.1128/JB.00326-21. Epub 2021 Nov 22.

Abstract

Bacteria have evolved a variety of enzymes to eliminate endogenous or host-derived oxidative stress factors. The Dps protein, first identified in Escherichia coli, contains a ferroxidase center, and protects bacteria from reactive oxygen species damage. Little is known of the role of Dps-like proteins in bacterial pathogenesis. Actinobacillus pleuropneumoniae causes pleuropneumonia, a respiratory disease of swine. The A. pleuropneumoniae gene is upregulated during shifts to anaerobiosis, in biofilms and, as found in this study, in the presence of HO. An A. pleuropneumoniae deletion mutant (Δ) had increased HO sensitivity, decreased intracellular viability in macrophages, and decreased virulence in a mouse infection model. Expression of in an E. coli mutant restored wild-type HO resistance. FtpA possesses a conserved ferritin domain containing a ferroxidase site. Recombinant rFtpA bound and oxidized Fe reversibly. Under aerobic conditions, the viability of an Δ mutant was reduced compared with the wild-type strain after extended culture, upon transition from anaerobic to aerobic conditions, and upon supplementation with Fenton reaction substrates. Under anaerobic conditions, the addition of HO resulted in a more severe growth defect of Δ than it did under aerobic conditions. Therefore, by oxidizing and mineralizing Fe, FtpA alleviates the oxidative damage mediated by intracellular Fenton reactions. Furthermore, by mutational analysis, two residues were confirmed to be critical for Fe binding and oxidization, as well as for A. pleuropneumoniae HO resistance. Taken together, the results of this study demonstrate that A. pleuropneumoniae FtpA is a Dps-like protein, playing critical roles in oxidative stress resistance and virulence. As a ferroxidase, Dps of Escherichia coli can protect bacteria from reactive oxygen species damage, but its role in bacterial pathogenesis has received little attention. In this study, FtpA of the swine respiratory pathogen A. pleuropneumoniae was identified as a new Dps-like protein. It facilitated A. pleuropneumoniae resistance to HO, survival in macrophages, and infection . FtpA could bind and oxidize Fe through two important residues in its ferroxidase site and protected the bacteria from oxidative damage mediated by the intracellular Fenton reaction. These findings provide new insights into the role of the FtpA-based antioxidant system in the pathogenesis of A. pleuropneumoniae, and the conserved Fe binding ligands in Dps/FtpA provide novel drug target candidates for disease prevention.

摘要

细菌已经进化出多种酶来消除内源性或宿主来源的氧化应激因素。Dps 蛋白最初在大肠杆菌中被发现,它含有一个亚铁氧化酶中心,可以保护细菌免受活性氧的伤害。目前对于 Dps 样蛋白在细菌发病机制中的作用知之甚少。胸膜肺炎放线杆菌引起猪的胸膜肺炎,这是一种猪的呼吸道疾病。在厌氧转变、生物膜中以及本研究中发现的 HO 存在下,A. pleuropneumoniae 基因上调。A. pleuropneumoniae 缺失突变体 (Δ) 对 HO 的敏感性增加,在巨噬细胞中的细胞内活力降低,在小鼠感染模型中的毒力降低。在大肠杆菌突变体中表达 恢复了野生型对 HO 的抗性。FtpA 具有保守的铁蛋白结构域,其中包含一个亚铁氧化酶位点。重组 rFtpA 可逆地结合并氧化 Fe。在有氧条件下,与野生型菌株相比,经过长时间培养后,从厌氧条件转变为有氧条件后,以及补充芬顿反应底物后,Δ 突变体的存活率降低。在厌氧条件下,HO 的添加导致 Δ 的生长缺陷比有氧条件下更严重。因此,FtpA 通过氧化和矿化 Fe 来减轻细胞内芬顿反应介导的氧化损伤。此外,通过突变分析,确定了两个残基对于 Fe 结合和氧化以及 A. pleuropneumoniae HO 抗性至关重要。总之,本研究结果表明,A. pleuropneumoniae FtpA 是一种 Dps 样蛋白,在氧化应激抗性和毒力方面发挥着关键作用。作为一种亚铁氧化酶,大肠杆菌的 Dps 可以保护细菌免受活性氧的伤害,但它在细菌发病机制中的作用尚未得到关注。在本研究中,猪呼吸道病原体胸膜肺炎放线杆菌的 FtpA 被鉴定为一种新的 Dps 样蛋白。它促进了 A. pleuropneumoniae 对 HO 的抗性、在巨噬细胞中的存活和感染。FtpA 可以通过其亚铁氧化酶位点中的两个重要残基结合并氧化 Fe,并保护细菌免受细胞内芬顿反应介导的氧化损伤。这些发现为 FtpA 抗氧化系统在胸膜肺炎放线杆菌发病机制中的作用以及 Dps/FtpA 中保守的 Fe 结合配体为疾病预防提供了新的药物靶点提供了新的见解。

相似文献

1
Identification of FtpA, a Dps-Like Protein Involved in Anti-Oxidative Stress and Virulence in Actinobacillus pleuropneumoniae.
J Bacteriol. 2022 Feb 15;204(2):e0032621. doi: 10.1128/JB.00326-21. Epub 2021 Nov 22.
2
A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae.
Microb Pathog. 2019 Sep;134:103596. doi: 10.1016/j.micpath.2019.103596. Epub 2019 Jun 15.
4
The CpxA/CpxR Two-Component System Affects Biofilm Formation and Virulence in .
Front Cell Infect Microbiol. 2018 Mar 20;8:72. doi: 10.3389/fcimb.2018.00072. eCollection 2018.
6
Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae.
Microbiology (Reading). 2002 Sep;148(Pt 9):2869-2882. doi: 10.1099/00221287-148-9-2869.

本文引用的文献

2
The CpxAR Two-Component System Contributes to Growth, Stress Resistance, and Virulence of by Upregulating Transcription.
Front Microbiol. 2020 May 21;11:1026. doi: 10.3389/fmicb.2020.01026. eCollection 2020.
3
A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae.
Microb Pathog. 2019 Sep;134:103596. doi: 10.1016/j.micpath.2019.103596. Epub 2019 Jun 15.
4
The roles of flp1 and tadD in Actinobacillus pleuropneumoniae pilus biosynthesis and pathogenicity.
Microb Pathog. 2019 Jan;126:310-317. doi: 10.1016/j.micpath.2018.11.010. Epub 2018 Nov 10.
5
TolC2 is required for the resistance, colonization and virulence of .
J Med Microbiol. 2017 Aug;66(8):1170-1176. doi: 10.1099/jmm.0.000544.
6
Polyamine-binding protein PotD2 is required for stress tolerance and virulence in Actinobacillus pleuropneumoniae.
Antonie Van Leeuwenhoek. 2017 Dec;110(12):1647-1657. doi: 10.1007/s10482-017-0914-7. Epub 2017 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验