Suppr超能文献

视图加权与聚类加权:哪种方法更适合多视图聚类?

View-Wise Versus Cluster-Wise Weight: Which Is Better for Multi-View Clustering?

作者信息

Hu Shizhe, Lou Zhengzheng, Ye Yangdong

出版信息

IEEE Trans Image Process. 2022;31:58-71. doi: 10.1109/TIP.2021.3128323. Epub 2021 Nov 30.

Abstract

Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods.

摘要

加权多视图聚类(MVC)旨在以加权方式组合多视图数据(如具有不同类型特征的图像数据)的互补信息,以获得一致的聚类结果。然而,当跨视图的聚类权重差异很大时,大多数现有的加权MVC方法可能无法充分利用互补信息,因为它们基于视图级权重学习,无法学习细粒度的聚类权重。此外,它们中的大多数需要额外的参数来控制权重分布的稀疏性或平滑性,在没有先验知识的情况下很难调整这些参数。为了解决这些问题,在本文中,我们提出了一种新颖有效的聚类加权多视图信息瓶颈(CURE)聚类算法,该算法可以自动学习聚类权重,以发现跨多个视图的判别性聚类,从而通过适当利用聚类级互补信息来提高聚类性能。为了学习聚类权重,我们通过探索特定聚类(包含一组数据样本)的联合分布的互信息与该聚类权重之间的关系,设计了一种新的权重学习方案。最后,提出了一种新颖的绘制合并方法来解决优化问题。在各种多视图数据集上的实验结果表明,我们的聚类加权CURE算法优于几种现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验