Suppr超能文献

两种不同模型预测住院患者跌倒风险的比较。

Comparison of Two Different Models to Predict Fall Risk in Hospitalized Patients.

出版信息

Jt Comm J Qual Patient Saf. 2022 Jan;48(1):33-39. doi: 10.1016/j.jcjq.2021.09.009. Epub 2021 Sep 24.

Abstract

BACKGROUND

Fall prevention is a patient safety and economic priority for health care organizations. An automated model within the electronic medical record (EMR) that accurately predicts risk for falling would be valuable for mitigation of inpatient falls. The aim of this study was to validate the reliability of an EMR-based computerized predictive model (ROF Model) for inpatient falls. The hypothesis was that the ROF Model would be similar to the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) in predicting fall events in the inpatient setting at a large academic medical center.

METHODS

This observational study compared the falls predicted by each model against actual falls over an eight-month period in a single institution. Descriptive statistics were used to compare the distribution of scores and accuracy of fall risk categorization for each model immediately preceding a fall.

RESULTS

For 35,709 inpatient encounters, the total fall rate was 0.92%. Of the 329 patients who fell, 60.8% were high risk by ROF Model (fall rate 1.82%), and 75.4% were high risk by JHFRAT (fall rate 1.39%). The ROF Model had a better specificity than the JHFRAT (69.7% vs. 49.2%) but a similar C-statistic (0.717 vs. 0.702) and a lower sensitivity (60.8% vs. 79.3%).

CONCLUSION

The performance of the ROF Model was similar to that of the JHFRAT in predicting inpatient falls. This comparison provides evidence to support a transition to a more automated process. Future studies will determine prospectively if implementation of the ROF Model will reduce falls in the inpatient setting.

摘要

背景

预防跌倒对医疗保健组织来说是患者安全和经济上的优先事项。电子病历(EMR)中的自动模型如果能够准确预测跌倒风险,对于减少住院患者跌倒将具有重要意义。本研究的目的是验证基于 EMR 的计算机预测模型(ROF 模型)预测住院患者跌倒的可靠性。假设是 ROF 模型在预测大型学术医疗中心住院环境中的跌倒事件方面与约翰霍普金斯跌倒风险评估工具(JHFRAT)相似。

方法

本观察性研究比较了在单个机构 8 个月期间,每个模型预测的跌倒事件与实际跌倒事件。使用描述性统计数据比较了每个模型在发生跌倒前即刻的分数分布和跌倒风险分类的准确性。

结果

在 35709 例住院患者中,总跌倒率为 0.92%。在 329 名跌倒患者中,60.8%的患者 ROF 模型风险较高(跌倒率为 1.82%),75.4%的患者 JHFRAT 风险较高(跌倒率为 1.39%)。ROF 模型的特异性优于 JHFRAT(69.7%比 49.2%),但 C 统计量相似(0.717 比 0.702),敏感性较低(60.8%比 79.3%)。

结论

ROF 模型预测住院患者跌倒的性能与 JHFRAT 相似。这种比较为向更自动化的过程过渡提供了证据。未来的研究将前瞻性地确定在住院环境中实施 ROF 模型是否会减少跌倒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验