De Armas Stefanie, Galván Guillermo A, Lapaz María I, González-Barrios Pablo, Vicente Esteban, Pianzzola María J, Siri María I
Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay.
Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), Montevideo 11800, Uruguay.
Plant Dis. 2022 Apr;106(4):1216-1225. doi: 10.1094/PDIS-06-21-1140-RE. Epub 2022 Mar 27.
Onion is among the most consumed vegetables in Uruguay, grown in the northwestern and southern regions of the country. The onion supply presents interannual variations associated with significant postharvest losses, mainly caused by bacterial rots. Besides bulb rotting, onion leaf lesions as well as infections on seed-stalks during seed production may be devastating for some varieties under conducive conditions. This research aimed to identify the causal agents of bulb rots and leaf blight of onion crops in Uruguay. Symptomatic bulbs, seeds-stalks, and leaves were collected from commercial fields from 2015 to 2020. Bacterial colonies were isolated and identified at genera level using physiological tests and 16S rRNA gene sequence analysis. A collection of 59 spp. isolates was obtained (11 from bulbs and 48 from leaves and seeds-stalks). Multilocus sequence analysis using four housekeeping genes (, , , and ) allowed the assignment of the isolates to five species: , , , , and The last two species were not previously reported as onion pathogens elsewhere. The ability to cause disease symptoms was tested by leaf inoculation and red onion scale assays. isolates showed the highest aggressiveness in both assays. Specific isolates from (MAI 6022), (MAI 6036), (MAI 6050), and sp. (MAI 6049) ranked second in aggressiveness on onion leaves, whereas only three isolates belonging to (MAI 6036 and MAI 6058) and (MAI 6045) exhibited the same scale-clearing phenotype as . Leaf inoculation assays were also performed on a set of eight onion cultivars and breeding lines. Overall, MAI 6032 showed the highest aggressiveness in all tested cultivars, followed by MAI 6036. The presence of new reported bacterial species leads to complex disease management and highlights the need for further studies on virulence factors and the epidemiology of these pathogens.
洋葱是乌拉圭消费最多的蔬菜之一,种植于该国的西北部和南部地区。洋葱供应存在年际变化,伴有严重的采后损失,主要由细菌性腐烂引起。除了鳞茎腐烂外,在有利条件下,洋葱叶片病斑以及种子生产期间种株的感染对某些品种可能是毁灭性的。本研究旨在确定乌拉圭洋葱作物鳞茎腐烂和叶枯病的病原菌。2015年至2020年从商业田地采集有症状的鳞茎、种株和叶片。通过生理测试和16S rRNA基因序列分析,在属水平上分离和鉴定细菌菌落。获得了59个菌株的集合(11个来自鳞茎,48个来自叶片和种株)。使用四个管家基因(、、和)进行多位点序列分析,可将这些菌株归为五个物种:、、、和。最后两个物种此前在其他地方未被报道为洋葱病原菌。通过叶片接种和红洋葱鳞片试验测试致病症状的能力。菌株在两种试验中表现出最高的侵袭性。来自(MAI 6022)、(MAI 6036)、(MAI 6050)和种(MAI 6049)的特定菌株在洋葱叶片上的侵袭性排名第二,而仅属于(MAI 6036和MAI 6058)和(MAI 6045)的三个菌株表现出与相同的鳞片清除表型。还对一组八个洋葱品种和育种系进行了叶片接种试验。总体而言,MAI 6032在所有测试品种中表现出最高的侵袭性,其次是MAI 6036。新报道的细菌物种的出现导致病害管理复杂,并突出了对这些病原菌的毒力因子和流行病学进行进一步研究的必要性。