Liu Shude, Kang Ling, Hu Jisong, Jung Euigeol, Henzie Joel, Alowasheeir Azhar, Zhang Jian, Miao Ling, Yamauchi Yusuke, Jun Seong Chan
School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea.
JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Small. 2022 Feb;18(5):e2104507. doi: 10.1002/smll.202104507. Epub 2021 Nov 24.
As a typical battery-type material, CuCo S is a promising candidate for supercapacitors due to the high theoretical specific capacity. However, its practical application is plagued by inherently sluggish ion diffusion kinetics and inferior electrical transport properties. Herein, sulfur vacancies are incorporated in CuCo S hollow nanoarchitectures (HNs) to accelerate redox reactivity. Experimental analyses and theoretical investigations uncover that the generated sulfur vacancies increase the active electron states, reduce the adsorption barriers of electrolyte ions, and enrich reactive redox species, thus achieving enhanced electrochemical performance. Consequently, the deficient CuCo S with optimized vacancy concentration presents a high specific capacity of 231 mAh g at 1 A g , a ≈1.78 times increase compared to that of pristine CuCo S , and exhibits a superior rate capability (73.8% capacity retention at 20 A g ). Furthermore, flexible solid-state asymmetric supercapacitor devices assembled with the deficient CuCo S HNs and VN nanosheets deliver a high energy density of 61.4 W h kg at 750 W kg . Under different bending states, the devices display exceptional mechanical flexibility with no obvious change in CV curves at 50 mV s . These findings provide insights for regulating electrode reactivity of battery-type materials through intentional nanoarchitectonics and vacancy engineering.
作为一种典型的电池型材料,CuCoS由于具有较高的理论比容量,是超级电容器的一个有前途的候选材料。然而,其实际应用受到固有的缓慢离子扩散动力学和较差的电传输性能的困扰。在此,硫空位被引入到CuCoS中空纳米结构(HNs)中以加速氧化还原反应活性。实验分析和理论研究发现,产生的硫空位增加了活性电子态,降低了电解质离子的吸附势垒,并富集了活性氧化还原物种,从而实现了增强的电化学性能。因此,具有优化空位浓度的缺陷型CuCoS在1 A g时呈现出231 mAh g的高比容量,与原始CuCoS相比增加了约1.78倍,并表现出优异的倍率性能(在20 A g时容量保持率为73.8%)。此外,由缺陷型CuCoS HNs和VN纳米片组装的柔性固态不对称超级电容器器件在750 W kg时提供61.4 W h kg的高能量密度。在不同的弯曲状态下,器件表现出出色的机械柔韧性,在50 mV s时CV曲线没有明显变化。这些发现为通过有意的纳米结构设计和空位工程调节电池型材料的电极反应活性提供了见解。