Suppr超能文献

用于开集图像识别的发散角表示

Divergent Angular Representation for Open Set Image Recognition.

作者信息

Park Jaewoo, Low Cheng Yaw, Beng Jin Teoh Andrew

出版信息

IEEE Trans Image Process. 2022;31:176-189. doi: 10.1109/TIP.2021.3128318. Epub 2021 Dec 2.

Abstract

Open set recognition (OSR) models need not only discriminate between known classes but also detect unknown class samples unavailable during training. One promising approach is to learn discriminative representations over known classes with strong intra-class similarity and inter-class discrepancy. Then, the powerful class discrimination learned from the known classes can be extended to known and unknown classes. Without appropriate regularization, however, the model may learn representations trivially, collapsing unknown class representations to the known class ones. To resolve this problem, we propose Divergent Angular Representation (DivAR) based on two approaches. Firstly, DivAR maximizes its representational discrimination between known classes via a highly discriminative loss. Secondly, to ensure separation between known and unknown classes in the representation space, DivAR boosts the directional variation of representations over global samples. In addition, self-supervision is leveraged to improve the representation's robustness and extend DivAR to one-class classification. Moreover, unlike other OSR methods that require an extra machinery for inference, DivAR learns and infers in a single module. Extensive experiments on generic image datasets demonstrate the plausibility and effectiveness of DivAR for both OSR and One-Class Classification (OCC) problems.

摘要

开放集识别(OSR)模型不仅需要区分已知类别,还需要检测训练期间不可用的未知类别样本。一种有前景的方法是在具有强类内相似性和类间差异的已知类别上学习判别性表示。然后,从已知类别中学到的强大的类别判别能力可以扩展到已知和未知类别。然而,如果没有适当的正则化,模型可能会简单地学习表示,将未知类别的表示坍缩为已知类别的表示。为了解决这个问题,我们基于两种方法提出了发散角表示(DivAR)。首先,DivAR通过高度判别性损失最大化其在已知类别之间的表示判别能力。其次,为了确保表示空间中已知和未知类别的分离,DivAR增强了全局样本上表示的方向变化。此外,利用自监督来提高表示的鲁棒性,并将DivAR扩展到单类分类。而且,与其他需要额外推理机制的OSR方法不同,DivAR在单个模块中进行学习和推理。在通用图像数据集上的大量实验证明了DivAR对于OSR和单类分类(OCC)问题的合理性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验