Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
Biochem Biophys Res Commun. 2022 Jan 1;586:49-54. doi: 10.1016/j.bbrc.2021.11.070. Epub 2021 Nov 20.
Maltodextrin glucosidase (MalZ) is a key enzyme in the maltose utilization pathway in Escherichia coli that liberates glucose from the reducing end of the short malto-oligosaccharides. Unlike other enzymes in the GH13_21 subfamily, the hydrolytic activity of MalZ is limited to maltodextrin rather than long starch substrates, forming various transglycosylation products in α-1,3, α-1,4 or α-1,6 linkages. The mechanism for the substrate binding and hydrolysis of this enzyme is not well understood yet. Here, we present the dimeric crystal structure of MalZ, with the N-domain generating a unique substrate binding groove. The N-domain bears CBM34 architecture and forms a part of the active site in the catalytic domain of the adjacent molecule. The groove found between the N-domain and catalytic domain from the adjacent molecule, shapes active sites suitable for short malto-oligosaccharides, but hinders long stretches of oligosaccharides. The conserved residue of E44 protrudes at subsite +2, elucidating the hydrolysis pattern of the substrate by the glucose unit from the reducing end. The structural analysis provides a molecular basis for the substrate specificity and the enzymatic property, and has potential industrial application for protein engineering.
麦芽糖葡糖苷酶(MalZ)是大肠杆菌麦芽糖利用途径中的关键酶,可从短麦芽寡糖的还原端释放葡萄糖。与 GH13_21 亚家族中的其他酶不同,MalZ 的水解活性仅限于麦芽糖,而不是长淀粉底物,在 α-1,3、α-1,4 或 α-1,6 键上形成各种转糖苷产物。该酶的底物结合和水解机制尚未得到很好的理解。在这里,我们展示了 MalZ 的二聚体晶体结构,其中 N 结构域产生了独特的底物结合槽。N 结构域具有 CBM34 结构,形成相邻分子催化结构域中活性位点的一部分。在相邻分子的 N 结构域和催化结构域之间发现的凹槽形成了适合短麦芽寡糖的活性位点,但阻碍了长链寡糖的进入。保守残基 E44 突出于+2 亚位,阐明了从还原端的葡萄糖单位对底物的水解模式。结构分析为底物特异性和酶学特性提供了分子基础,并具有蛋白质工程的潜在工业应用价值。