Suppr超能文献

高级别浆液性卵巢癌中融合现象超出耐药性的表型后果

Phenotypic Consequences of Fusions beyond Drug Resistance in High-Grade Serous Ovarian Cancer.

作者信息

Pishas Kathleen I, Cowley Karla J, Pandey Ahwan, Hoang Therese, Beach Jessica A, Luu Jennii, Vary Robert, Smith Lorey K, Shembrey Carolyn E, Rashoo Nineveh, White Madelynne O, Simpson Kaylene J, Bild Andrea, Griffiths Jason I, Cheasley Dane, Campbell Ian, Bowtell David D L, Christie Elizabeth L

机构信息

Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.

The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia.

出版信息

Cancers (Basel). 2021 Nov 11;13(22):5644. doi: 10.3390/cancers13225644.

Abstract

Despite high response rates to initial chemotherapy, the majority of women diagnosed with High-Grade Serous Ovarian Cancer (HGSOC) ultimately develop drug resistance within 1-2 years of treatment. We previously identified the most common mechanism of acquired resistance in HGSOC to date, transcriptional fusions involving the ATP-binding cassette (ABC) transporter , which has well established roles in multidrug resistance. However, the underlying biology of fusion-positive cells, as well as how clonal interactions between fusion-negative and positive populations influences proliferative fitness and therapeutic response remains unknown. Using a panel of fusion-negative and positive HGSOC single-cell clones, we demonstrate that in addition to mediating drug resistance, fusion-positive cells display impaired proliferative capacity, elevated oxidative metabolism, altered actin cellular morphology and an extracellular matrix/inflammatory enriched transcriptional profile. The co-culture of fusion-negative and positive populations had no effect on cellular proliferation but markedly altered drug sensitivity to doxorubicin, paclitaxel and cisplatin. Finally, high-throughput screening of 2907 FDA-approved compounds revealed 36 agents that induce equal cytotoxicity in both pure and mixed fusion populations. Collectively, our findings have unraveled the underlying biology of fusion-positive cells beyond drug resistance and identified novel therapeutic agents that may significantly improve the prognosis of relapsed HGSOC patients.

摘要

尽管对初始化疗的反应率很高,但大多数被诊断为高级别浆液性卵巢癌(HGSOC)的女性在治疗的1 - 2年内最终会产生耐药性。我们之前确定了迄今为止HGSOC中获得性耐药最常见的机制,即涉及ATP结合盒(ABC)转运蛋白的转录融合,该转运蛋白在多药耐药中具有既定作用。然而,融合阳性细胞的潜在生物学特性,以及融合阴性和阳性群体之间的克隆相互作用如何影响增殖适应性和治疗反应仍然未知。使用一组融合阴性和阳性的HGSOC单细胞克隆,我们证明,除了介导耐药性外,融合阳性细胞还表现出增殖能力受损、氧化代谢升高、肌动蛋白细胞形态改变以及细胞外基质/炎症富集的转录谱。融合阴性和阳性群体的共培养对细胞增殖没有影响,但显著改变了对阿霉素、紫杉醇和顺铂的药物敏感性。最后,对2907种FDA批准的化合物进行高通量筛选,发现了36种在纯融合群体和混合融合群体中均能诱导同等细胞毒性的药物。总的来说,我们的研究结果揭示了融合阳性细胞除耐药性之外的潜在生物学特性,并确定了可能显著改善复发性HGSOC患者预后的新型治疗药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c23c/8616176/b5005f91f8f8/cancers-13-05644-g001a.jpg

相似文献

1
Phenotypic Consequences of Fusions beyond Drug Resistance in High-Grade Serous Ovarian Cancer.
Cancers (Basel). 2021 Nov 11;13(22):5644. doi: 10.3390/cancers13225644.
2
Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous ovarian and breast cancer.
Nat Commun. 2019 Mar 20;10(1):1295. doi: 10.1038/s41467-019-09312-9.
3
ABCA1 is associated with the development of acquired chemotherapy resistance and predicts poor ovarian cancer outcome.
Cancer Drug Resist. 2021 Jun 19;4(2):485-502. doi: 10.20517/cdr.2020.107. eCollection 2021.
4
Targeted nanopore sequencing for the identification of ABCB1 promoter translocations in cancer.
BMC Cancer. 2020 Nov 10;20(1):1075. doi: 10.1186/s12885-020-07571-0.
7
Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter.
Oncotarget. 2015 Jun 20;6(17):15494-509. doi: 10.18632/oncotarget.3820.
8
Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: Different models for different questions.
Drug Resist Updat. 2016 Jan;24:55-69. doi: 10.1016/j.drup.2015.11.005. Epub 2015 Nov 26.
10
Novel Potent ABCB1 Modulator, Phenethylisoquinoline Alkaloid, Reverses Multidrug Resistance in Cancer Cell.
Mol Pharm. 2018 Sep 4;15(9):4021-4030. doi: 10.1021/acs.molpharmaceut.8b00457. Epub 2018 Aug 13.

引用本文的文献

1
Unveiling drug resistance pathways in high-grade serous ovarian cancer(HGSOC): recent advances and future perspectives.
Front Immunol. 2025 Apr 30;16:1556377. doi: 10.3389/fimmu.2025.1556377. eCollection 2025.
2
The role of STK11/LKB1 in cancer biology: implications for ovarian tumorigenesis and progression.
Front Cell Dev Biol. 2024 Oct 31;12:1449543. doi: 10.3389/fcell.2024.1449543. eCollection 2024.

本文引用的文献

1
Cancer drug resistance induced by EMT: novel therapeutic strategies.
Arch Toxicol. 2021 Jul;95(7):2279-2297. doi: 10.1007/s00204-021-03063-7. Epub 2021 May 18.
2
CDK4/6 Inhibition Reprograms Mitochondrial Metabolism in BRAF Melanoma via a p53 Dependent Pathway.
Cancers (Basel). 2021 Jan 29;13(3):524. doi: 10.3390/cancers13030524.
3
A source of hope for platinum-resistant ovarian cancer?
Lancet. 2021 Jan 23;397(10271):254-256. doi: 10.1016/S0140-6736(21)00128-8.
4
Effect of ABC transporter expression and mutational status on survival rates of cancer patients.
Biomed Pharmacother. 2020 Nov;131:110718. doi: 10.1016/j.biopha.2020.110718. Epub 2020 Sep 12.
5
Integrating evolutionary dynamics into cancer therapy.
Nat Rev Clin Oncol. 2020 Nov;17(11):675-686. doi: 10.1038/s41571-020-0411-1. Epub 2020 Jul 22.
6
Mechanisms of Multidrug Resistance in Cancer Chemotherapy.
Int J Mol Sci. 2020 May 2;21(9):3233. doi: 10.3390/ijms21093233.
7
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
Nat Commun. 2019 Apr 3;10(1):1523. doi: 10.1038/s41467-019-09234-6.
8
Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous ovarian and breast cancer.
Nat Commun. 2019 Mar 20;10(1):1295. doi: 10.1038/s41467-019-09312-9.
9
Revisiting the role of ABC transporters in multidrug-resistant cancer.
Nat Rev Cancer. 2018 Jul;18(7):452-464. doi: 10.1038/s41568-018-0005-8.
10
Biomarkers of platinum resistance in ovarian cancer: what can we use to improve treatment.
Endocr Relat Cancer. 2018 May;25(5):R303-R318. doi: 10.1530/ERC-17-0336. Epub 2018 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验