Suppr超能文献

BiWO/BiOCl异质结纳米复合材料在可见光下活化过一硫酸盐降解双酚A

Peroxymonosulfate Activation by BiWO/BiOCl Heterojunction Nanocomposites under Visible Light for Bisphenol A Degradation.

作者信息

Huang Yongkui, Yin Xiangyang, He Pei, Kou Shuangwu, Zhang Xiaoting, Wang Lei, Lu Peili

机构信息

Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China.

State Key Laboratory of Coal Mine Disaster Dynamics and Control, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.

出版信息

Nanomaterials (Basel). 2021 Nov 20;11(11):3130. doi: 10.3390/nano11113130.

Abstract

The combination of peroxymonosulfate (PMS) activation and photocatalysis has proven to be effective for organic contaminants treatment. However, the construction of an efficient catalytic material is an important challenge. Herein, novel BiWO/BiOCl heterojunction nanocomposites were successfully designed and fabricated using a facile and effective strategy for bisphenol A (BPA) photodegradation with PMS activation. The well-designed heterojunction with improvement of the contact area and interface microstructure was obtained through in situ growth of the BiWO on the surface of BiOCl. The BiWO/BiOCl nanocomposites exhibit excellent catalytic performance in PMS activation for BPA degradation under visible light irradiation. A possible photocatalytic reaction mechanism was systematically revealed. The excellent catalytic performance is mainly attributed to the strong interaction between BiWO and BiOCl, resulting in an enhanced photoabsorption and a more efficient interfacial charge separation and transfer. This paper provides a novel strategy to design efficient catalytic materials for organic contaminants remediation with PMS activation.

摘要

过一硫酸盐(PMS)活化与光催化相结合已被证明对有机污染物处理有效。然而,构建高效催化材料是一项重大挑战。在此,采用简便有效的策略成功设计并制备了新型BiWO/BiOCl异质结纳米复合材料,用于通过PMS活化光降解双酚A(BPA)。通过在BiOCl表面原位生长BiWO获得了设计良好的异质结,其接触面积和界面微观结构得到改善。BiWO/BiOCl纳米复合材料在可见光照射下对PMS活化降解BPA表现出优异的催化性能。系统地揭示了一种可能的光催化反应机制。优异的催化性能主要归因于BiWO和BiOCl之间的强相互作用,导致光吸收增强以及界面电荷分离和转移更高效。本文提供了一种设计用于通过PMS活化修复有机污染物的高效催化材料的新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e35/8621688/21309d86eaa4/nanomaterials-11-03130-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验