Ridolfi Andrea, Humphreys Ben, Caselli Lucrezia, Montis Costanza, Nylander Tommy, Berti Debora, Brucale Marco, Valle Francesco
Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Firenze, Italy; Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, 40129 Bologna, Italy; Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, 50019 Firenze, Italy.
Physical Chemistry, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden; Lund Institute of Advanced Neutron and X-ray Science - LINXS, SE- 223 70 Lund, Sweden; NanoLund, Lund University, SE-221 00 Lund, Sweden.
Colloids Surf B Biointerfaces. 2022 Feb;210:112231. doi: 10.1016/j.colsurfb.2021.112231. Epub 2021 Nov 19.
The mechanical response of lipid membranes to nanoscale deformations is of fundamental importance for understanding how these interfaces behave in multiple biological processes; in particular, the nanoscale mechanics of non-lamellar membranes represents a largely unexplored research field. Among these mesophases, inverse bicontinuous cubic phase Q membranes have been found to spontaneously occur in stressed or virally infected cells and to play a role in fundamental processes, such as cell fusion and food digestion. We herein report on the fabrication of thin ( ̴150 nm) supported Q cubic phase lipid films (SQFs) and on their characterization via multiple techniques including Small Angle X-Ray Scattering (SAXS), Ellipsometry and Atomic Force Microscopy (AFM). Moreover, we present the first nanomechanical characterization of a cubic phase lipid membrane, through AFM-based Force Spectroscopy (AFM-FS). Our analysis reveals that the mechanical response of these architectures is strictly related to their topology and structure. The observed properties are strikingly similar to those of macroscopic 3D printed cubic structures when subjected to compression tests in material science; suggesting that this behaviour depends on the 3D organisation, rather than on the length-scale of the architecture. We also show for the first time that AFM-FS can be used for characterizing the structure of non-lamellar mesophases, obtaining lattice parameters in agreement with SAXS data. In contrast to classical rheological studies, which can only probe bulk cubic phase solutions, our AFM-FS analysis allows probing the response of cubic membranes to deformations occurring at length and force scales similar to those found in biological interactions.
脂质膜对纳米级变形的力学响应对于理解这些界面在多种生物过程中的行为至关重要;特别是,非层状膜的纳米级力学代表了一个很大程度上未被探索的研究领域。在这些中间相中,已发现反双连续立方相Q膜会在应激或病毒感染的细胞中自发出现,并在细胞融合和食物消化等基本过程中发挥作用。我们在此报告了薄(约150纳米)的支撑Q立方相脂质膜(SQFs)的制备及其通过多种技术进行的表征,包括小角X射线散射(SAXS)、椭偏仪和原子力显微镜(AFM)。此外,我们通过基于AFM的力谱(AFM-FS)首次对立方相脂质膜进行了纳米力学表征。我们的分析表明,这些结构的力学响应与其拓扑结构密切相关。在材料科学中进行压缩测试时,观察到的特性与宏观3D打印立方结构的特性惊人地相似;这表明这种行为取决于3D结构,而不是结构的长度尺度。我们还首次表明,AFM-FS可用于表征非层状中间相的结构,获得与SAXS数据一致的晶格参数。与只能探测体相立方相溶液的经典流变学研究不同,我们的AFM-FS分析能够探测立方膜对在长度和力尺度上与生物相互作用中相似的变形的响应。