Wieser H P, Huang Y, Schauer J, Lascaud J, Würl M, Lehrack S, Radonic D, Vidal M, Hérault J, Chmyrov A, Ntziachristos V, Assmann W, Parodi K, Dollinger G
Department for Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, D-85748 Garching b. München, Germany.
Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM) Technical University Munich, D-81675 Munich, Germany.
Phys Med Biol. 2021 Dec 16;66(24). doi: 10.1088/1361-6560/ac3ead.
Accurate knowledge of the exact stopping location of ions inside the patient would allow full exploitation of their ballistic properties for patient treatment. The localized energy deposition of a pulsed particle beam induces a rapid temperature increase of the irradiated volume and leads to the emission of ionoacoustic (IA) waves. Detecting the time-of-flight () of the IA wave allows inferring information on the Bragg peak location and can henceforth be used forrange verification. A challenge for IA is the poor signal-to-noise ratio at clinically relevant doses and viable machines. We present a frequency-based measurement technique, labeled as ionoacoustic tandem phase detection (iTPD) utilizing lock-in amplifiers. The phase shift of the IA signal to a reference signal is measured to derive the. Experimental IA measurements with a 3.5 MHz lead zirconate titanate (PZT) transducer and lock-in amplifiers were performed in water using 22 MeV proton bursts. A digital iTPD was performedat clinical dose levels on experimental data obtained from a clinical facility and secondly, on simulations emulating a heterogeneous geometry. For the experimental setup using 22 MeV protons, a localization accuracy and precision obtained through iTPD deviates from a time-based reference analysis by less than 15m. Several methodological aspects were investigated experimentally in systematic manner. Lastly, iTPD was evaluatedfor clinical beam energies indicating that iTPD is in reach of sub-mm accuracy for fractionated doses < 5 Gy. iTPD can be used to accurately measure theof IA signals online via its phase shift in frequency domain. An application of iTPD to the clinical scenario using a single pulsed beam is feasible but requires further development to reach <1 Gy detection capabilities.
准确了解离子在患者体内的确切停止位置,将有助于充分利用其弹道特性进行患者治疗。脉冲粒子束的局部能量沉积会导致被照射体积迅速升温,并引发离子声波(IA)的发射。检测IA波的飞行时间()可以推断出布拉格峰位置的信息,从而可用于射程验证。IA面临的一个挑战是在临床相关剂量和可行的设备条件下信噪比很低。我们提出了一种基于频率的测量技术,称为离子声波串联相位检测(iTPD),它利用了锁定放大器。测量IA信号相对于参考信号的相移以得出。使用3.5兆赫锆钛酸铅(PZT)换能器和锁定放大器,在水中对22兆电子伏特质子脉冲进行了IA实验测量。首先,在临床剂量水平下对从临床设施获得的实验数据进行了数字iTPD测量,其次,对模拟非均匀几何形状的模拟数据进行了测量。对于使用22兆电子伏特质子的实验装置,通过iTPD获得的定位精度和精密度与基于时间的参考分析相比偏差小于15米。以系统的方式对几个方法学方面进行了实验研究。最后,对临床束流能量进行了iTPD评估,结果表明对于分次剂量<5戈瑞,iTPD的精度可达亚毫米级。iTPD可通过其在频域中的相移在线准确测量IA信号的。将iTPD应用于使用单个脉冲束的临床场景是可行的,但需要进一步发展以达到<1戈瑞的检测能力。