Suppr超能文献

基于图像的长效胃肠外植入剂释放预测与三维微观结构表征

Correlative Image-Based Release Prediction and 3D Microstructure Characterization for a Long Acting Parenteral Implant.

作者信息

Liu Zhen, Li Li, Zhang Shawn, Lomeo Josh, Zhu Aiden, Chen Jacie, Barrett Stephanie, Koynov Athanas, Forster Seth, Wuelfing Peter, Xu Wei

机构信息

Preformulation Sciences, Preclinical Development, Merck & Co., Inc., Kenilworth, NJ, 07033, USA.

Analytical Sciences, Preclinical Development, Merck & Co., Inc., Kenilworth, NJ, 07033, USA.

出版信息

Pharm Res. 2021 Nov;38(11):1915-1929. doi: 10.1007/s11095-021-03145-2. Epub 2021 Dec 1.

Abstract

Imaging-based characterization of polymeric drug-eluting implants can be challenging due to the microstructural complexity and scale of dispersed drug domains and polymer matrix. The typical evaluation via real-time (and accelerated in vitro experiments not only can be very labor intensive since implants are designed to last for 3 months or longer, but also fails to elucidate the impact of the internal microstructure on the implant release rate. A novel characterization technique, combining multi-scale high resolution three-dimensional imaging, was developed for a mechanistic understanding of the impact of formulation and manufacturing process on the implant microstructure. Artificial intelligence-based image segmentation and imaging analytics convert "visualized" structural properties into numerical models, which can be used to calculate key parameters governing drug transport in the polymer matrix, such as effective permeability. Simulations of drug transport in structures constructed on the basis of image analytics can be used to predict the release rates for the drug-eluting implant without running lengthy experiments. Multi-scale imaging approach and image-based characterization generate a large amount of quantitative structural information that are difficult to obtain experimentally. The direct-imaging based analytics and simulation is a powerful tool and has potential to advance fundamental understanding of drug release mechanism and the development of robust drug-eluting implants.

摘要

由于分散药物区域和聚合物基质的微观结构复杂性和尺度,基于成像对聚合物药物洗脱植入物进行表征可能具有挑战性。通过实时(以及加速体外实验)进行的典型评估不仅可能非常耗费人力,因为植入物设计使用寿命为3个月或更长时间,而且无法阐明内部微观结构对植入物释放速率的影响。为了从机理上理解制剂和制造工艺对植入物微观结构的影响,开发了一种结合多尺度高分辨率三维成像的新型表征技术。基于人工智能的图像分割和成像分析将“可视化”的结构特性转化为数值模型,可用于计算控制药物在聚合物基质中传输的关键参数,如有效渗透率。基于图像分析构建的结构中药物传输的模拟可用于预测药物洗脱植入物的释放速率,而无需进行冗长的实验。多尺度成像方法和基于图像的表征产生了大量难以通过实验获得的定量结构信息。基于直接成像的分析和模拟是一种强大的工具,有潜力推动对药物释放机制的基本理解以及稳健的药物洗脱植入物的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验