Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.
Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain.
Am J Physiol Lung Cell Mol Physiol. 2022 Feb 1;322(2):L191-L203. doi: 10.1152/ajplung.00230.2021. Epub 2021 Dec 1.
By coating the alveolar air-liquid interface, lung surfactant overwhelms surface tension forces that, otherwise, would hinder the lifetime effort of breathing. Years of research have provided a picture of how highly hydrophobic and specialized proteins in surfactant promote rapid and efficient formation of phospholipid-based complex three-dimensional films at the respiratory surface, highly stable under the demanding breathing mechanics. However, recent evidence suggests that the structure and performance of surfactant typically isolated from bronchoalveolar lung lavages may be far from that of nascent, still unused, surfactant as freshly secreted by type II pneumocytes into the alveolar airspaces. In the present work, we report the isolation of lung surfactant from human amniotic fluid (amniotic fluid surfactant, AFS) and a detailed description of its composition, structure, and surface activity in comparison to a natural surfactant (NS) purified from porcine bronchoalveolar lavages. We observe that the lipid/protein complexes in AFS exhibit a substantially higher lipid packing and dehydration than in NS. AFS shows melting transitions at higher temperatures than NS and a conspicuous presence of nonlamellar phases. The surface activity of AFS is not only comparable with that of NS under physiologically meaningful conditions but displays significantly higher resistance to inhibition by serum or meconium, agents that inactivate surfactant in the context of severe respiratory pathologies. We propose that AFS may be the optimal model to study the molecular mechanisms sustaining pulmonary surfactant performance in health and disease, and the reference material to develop improved therapeutic surfactant preparations to treat yet unresolved respiratory pathologies.
通过覆盖肺泡气-液界面,肺表面活性物质克服了表面张力,否则这些表面张力会阻碍呼吸这一生理活动。多年的研究已经描绘出表面活性物质中高度疏水和特殊的蛋白质是如何促进磷脂为基础的复杂三维膜在呼吸表面上快速和有效地形成的,这些三维膜在苛刻的呼吸力学条件下高度稳定。然而,最近的证据表明,通常从支气管肺泡灌洗液中分离出来的表面活性物质的结构和性能可能与刚分泌到肺泡气腔中的、尚未使用的II 型肺泡细胞分泌的表面活性物质相去甚远。在本工作中,我们报告了从人羊水(羊水表面活性物质,AFS)中分离肺表面活性物质,并详细描述了其组成、结构和表面活性,与从猪支气管肺泡灌洗液中纯化的天然表面活性物质(NS)进行了比较。我们观察到 AFS 中的脂质/蛋白质复合物表现出比 NS 更高的脂质堆积和脱水程度。AFS 表现出比 NS 更高的熔融转变温度和明显存在非层状相。在生理相关条件下,AFS 的表面活性不仅与 NS 相当,而且显示出对血清或胎粪抑制的显著抗性,这些物质在严重呼吸病理情况下会使表面活性物质失活。我们提出,AFS 可能是研究肺表面活性物质在健康和疾病中维持性能的分子机制的最佳模型,也是开发治疗尚未解决的呼吸病理的改良治疗性表面活性物质制剂的参考材料。