Suppr超能文献

基于改进遗传算法的动态手术调度

Dynamic Surgery Scheduling Based on an Improved Genetic Algorithm.

机构信息

School of Economics and Management, Tongji University, Shanghai 200092, China.

出版信息

J Healthc Eng. 2021 Nov 22;2021:1559050. doi: 10.1155/2021/1559050. eCollection 2021.

Abstract

We formulated a new stochastic programming formulation to solve the dynamic scheduling problem in a given set of elective surgeries in the day of operation. The problem is complicated by the fact that the exact surgery durations are not known in advance. Elective surgeries could be performed in parallel in a subset of operating rooms. The appointment times and assignments of surgeries were planned by an experienced nurses in advance. We present a mathematical model to capture the nature of dynamic scheduling problem. We propose an efficient solution based on an improved genetic algorithm (IGA). Our numerical results showed that dynamic scheduling with the IGA improves the resource utilization as measured by surgeon waiting time and operation room idle time.

摘要

我们提出了一种新的随机规划公式来解决手术当天指定的选修手术中的动态调度问题。由于精确的手术持续时间事先无法得知,因此该问题较为复杂。选修手术可以在一组手术室的子集上并行进行。预约时间和手术分配由有经验的护士提前计划。我们提出了一个数学模型来捕捉动态调度问题的本质。我们提出了一种基于改进遗传算法(IGA)的有效解决方案。我们的数值结果表明,通过 IGA 的动态调度可以提高资源利用率,以测量外科医生等待时间和手术室空闲时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e96/8629632/ab33883a659e/JHE2021-1559050.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验