Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China; Image Processing Center, School of Astronautics, Beihang University, Beijing 102206, China.
Med Image Anal. 2022 Feb;76:102308. doi: 10.1016/j.media.2021.102308. Epub 2021 Nov 20.
Content-based histopathological image retrieval (CBHIR) has become popular in recent years in histopathological image analysis. CBHIR systems provide auxiliary diagnosis information for pathologists by searching for and returning regions that are contently similar to the region of interest (ROI) from a pre-established database. It is challenging and yet significant in clinical applications to retrieve diagnostically relevant regions from a database consisting of histopathological whole slide images (WSIs). In this paper, we propose a novel framework for regions retrieval from WSI database based on location-aware graphs and deep hash techniques. Compared to the present CBHIR framework, both structural information and global location information of ROIs in the WSI are preserved by graph convolution and self-attention operations, which makes the retrieval framework more sensitive to regions that are similar in tissue distribution. Moreover, benefited from the graph structure, the proposed framework has good scalability for both the size and shape variation of ROIs. It allows the pathologist to define query regions using free curves according to the appearance of tissue. Thirdly, the retrieval is achieved based on the hash technique, which ensures the framework is efficient and adequate for practical large-scale WSI database. The proposed method was evaluated on an in-house endometrium dataset with 2650 WSIs and the public ACDC-LungHP dataset. The experimental results have demonstrated that the proposed method achieved a mean average precision above 0.667 on the endometrium dataset and above 0.869 on the ACDC-LungHP dataset in the task of irregular region retrieval, which are superior to the state-of-the-art methods. The average retrieval time from a database containing 1855 WSIs is 0.752 ms. The source code is available at https://github.com/zhengyushan/lagenet.
基于内容的组织病理学图像检索(CBHIR)近年来在组织病理学图像分析中变得越来越流行。CBHIR 系统通过搜索和返回与预定义数据库中的感兴趣区域(ROI)内容相似的区域,为病理学家提供辅助诊断信息。从由组织病理学全切片图像(WSI)组成的数据库中检索具有诊断相关性的区域,这在临床应用中具有挑战性,但也很重要。在本文中,我们提出了一种基于位置感知图和深度哈希技术的 WSI 数据库中区域检索的新框架。与现有的 CBHIR 框架相比,通过图卷积和自注意力操作保留了 WSI 中 ROI 的结构信息和全局位置信息,这使得检索框架对组织分布相似的区域更敏感。此外,得益于图结构,所提出的框架对 ROI 的大小和形状变化具有良好的可扩展性。它允许病理学家根据组织的外观使用自由曲线定义查询区域。第三,检索是基于哈希技术实现的,这确保了框架对于实际大规模 WSI 数据库是高效和充分的。所提出的方法在内部子宫内膜数据集(包含 2650 个 WSI)和公共 ACDC-LungHP 数据集上进行了评估。实验结果表明,在所提出的方法在不规则区域检索任务上在子宫内膜数据集上的平均准确率高于 0.667,在 ACDC-LungHP 数据集上的平均准确率高于 0.869,优于现有的方法。从包含 1855 个 WSI 的数据库中检索的平均时间为 0.752 毫秒。源代码可在 https://github.com/zhengyushan/lagenet 上获得。