Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
Sci Total Environ. 2022 Mar 1;810:151720. doi: 10.1016/j.scitotenv.2021.151720. Epub 2021 Nov 30.
Carbon dioxide emissions and their sharply rising effect on global warming have encouraged research efforts to develop efficient technologies and materials for CO capture. Post-combustion CO capture by adsorption using solid materials is considered an attractive technology to achieve this goal. Templated materials, such as Zeolite Templated-Carbons and MOF-Derived Carbons, are considered as the next-generation carbon adsorbent materials, owing to their outstanding textural properties (high surface areas of ca. 4000 m g and micropore volumes of ca. 1.7 cm g) and their versatility for surface functionalization. These materials have demonstrated remarkable CO adsorption capacities and CO/N selectivities up to ca. 5 mmol g and 100, respectively, at 298 K and 1 bar, and low isosteric heat of adsorption at zero coverage of ca. 12 kJ mol. Herein, a review of the advances in preparation of ZTCs and MDCs for CO capture is presented, followed by a critical analysis of the effects of textural properties and surface functionality on CO adsorption, including CO uptake, CO/N selectivity, and isosteric heat of adsorption. This analysis led to the introduction of a Vx N-content factor to evaluate the interplay between N-content and textural properties to maximize the CO uptake. Despite their promising performance in CO uptake, further testing using mixtures and impurities, and studies on adsorbent regeneration, and cyclic operation are desirable to demonstrate the stability of the MDCs and ZTCs for large scale processes. In addition, advances in scale-up syntheses and their economics are needed.
二氧化碳排放及其对全球变暖的急剧影响促使人们努力开发高效的 CO 捕集技术和材料。使用固体材料进行后燃烧 CO 吸附被认为是实现这一目标的一种有吸引力的技术。由于其出色的结构特性(约 4000 m2 g 的高比表面积和约 1.7 cm3 g 的微孔体积)和表面功能化的多功能性,模板材料,如沸石模板炭(ZTC)和 MOF 衍生碳(MDC)被认为是下一代碳吸附材料。这些材料在 298 K 和 1 bar 下表现出显著的 CO 吸附容量和 CO/N 选择性,分别高达约 5 mmol g 和 100,以及在零覆盖时约为 12 kJ mol 的低等吸附热。本文综述了用于 CO 捕集的 ZTC 和 MDC 的制备进展,随后对结构特性和表面功能对 CO 吸附的影响进行了批判性分析,包括 CO 吸收量、CO/N 选择性和等吸附热。该分析引入了 Vx N 含量因子来评估 N 含量与结构特性之间的相互作用,以最大程度地提高 CO 吸收量。尽管它们在 CO 吸收方面表现出良好的性能,但仍需要进一步使用混合物和杂质进行测试,并对吸附剂再生和循环操作进行研究,以证明 MDC 和 ZTC 在大规模工艺中的稳定性。此外,还需要在扩大合成规模及其经济性方面取得进展。