Shawky Ahmed, Alshaikh Hind
Nanomaterials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical R&D Institute (CMRDI), P.O. Box 87, Helwan, 11421, Cairo, Egypt.
Chemistry Department, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia.
Environ Res. 2022 Apr 1;205:112462. doi: 10.1016/j.envres.2021.112462. Epub 2021 Dec 3.
Currently, metal oxide photocatalysts is a green and facile tool for the elimination of emerging pollutants utilizing light illumination. Though, the wide bandgap energy (E), rapid recombination of photogenerated carriers, and photostability of these oxides represent critical issues before the actual application. Herein, we familiarise a sol-gel based synthesis of ZnO hexagonal nanoplatelets modified with CoFeO (CFO) nanoparticles at minor loading (1.0-4.0 wt %) to yield CFO/ZnO nanoheterojunctions. The CFO/ZnO unveiled mesostructured surfaces at surface areas of 102-120 m g and photoactive in the visible region with high. The CFO addition to ZnO reduced its E from 3.14 to 2.66 eV. The formed nanoheterojunctions were applied to remediate ciprofloxacin (CPF), as an antibiotic pollutant in wastewater. The 2.4 g L 3.0 wt % CFO-added ZnO exhibited a 100% removal of 10-ppm CPF within 45 min of visible-light irradiation and sustainable recycling ability for five consecutive runs at 97%. The sustainable performance of CFO/ZnO is ascribed to the suppression of photogenerated carriers and reduction of E by p-n nanoheterojunction formation. This study broadens the way for nanoheterojunction oxides for the destruction of pharmaceutical wastes under visible-light illumination.
目前,金属氧化物光催化剂是一种利用光照消除新兴污染物的绿色便捷工具。然而,这些氧化物的宽带隙能量(E)、光生载流子的快速复合以及光稳定性是实际应用前的关键问题。在此,我们介绍一种基于溶胶 - 凝胶法合成的用少量负载(1.0 - 4.0 wt%)的CoFeO(CFO)纳米颗粒修饰的ZnO六角纳米片,以产生CFO/ZnO纳米异质结。CFO/ZnO在102 - 120 m²/g的表面积上呈现介观结构表面,并且在可见光区域具有高光活性。向ZnO中添加CFO使其E从3.14 eV降低到2.66 eV。所形成的纳米异质结被用于修复废水中作为抗生素污染物的环丙沙星(CPF)。添加3.0 wt% CFO的2.4 g/L ZnO在可见光照射45分钟内对10 ppm的CPF表现出100%的去除率,并且连续五次运行的可持续循环能力为97%。CFO/ZnO的可持续性能归因于通过p - n纳米异质结的形成抑制光生载流子并降低E。这项研究拓宽了纳米异质结氧化物在可见光照射下销毁药物废物的途径。