Suppr超能文献

了解新冠疫情信息疫情的模式:遏制虚假新闻的系统务实方法。

Understanding patterns of COVID infodemic: A systematic and pragmatic approach to curb fake news.

作者信息

Gupta Ashish, Li Han, Farnoush Alireza, Jiang Wenting

机构信息

Department of Systems & Technology, Raymond J. Harbert College of Business, Auburn University, Auburn, AL 36849, USA.

Department of Marketing, Information Systems, Information Assurance, and Operations Management, Anderson School of Management, University of New Mexico, Albuquerque, NM 87106, USA.

出版信息

J Bus Res. 2022 Feb;140:670-683. doi: 10.1016/j.jbusres.2021.11.032. Epub 2021 Nov 16.

Abstract

Amid the flood of fake news on Coronavirus disease of 2019 (COVID-19), now referred to as COVID-19 infodemic, it is critical to understand the nature and characteristics of COVID-19 infodemic since it not only results in altered individual perception and behavior shift such as irrational preventative actions but also presents imminent threat to the public safety and health. In this study, we build on First Amendment theory, integrate text and network analytics and deploy a three-pronged approach to develop a deeper understanding of COVID-19 infodemic. The first prong uses Latent Direchlet Allocation (LDA) to identify topics and key themes that emerge in COVID-19 fake and real news. The second prong compares and contrasts different emotions in fake and real news. The third prong uses network analytics to understand various network-oriented characteristics embedded in the COVID-19 real and fake news such as page rank algorithms, betweenness centrality, eccentricity and closeness centrality. This study carries important implications for building next generation trustworthy technology by providing strong guidance for the design and development of fake news detection and recommendation systems for coping with COVID-19 infodemic. Additionally, based on our findings, we provide actionable system focused guidelines for dealing with immediate and long-term threats from COVID-19 infodemic.

摘要

在关于2019冠状病毒病(COVID-19)的假新闻泛滥的情况下,如今这被称为COVID-19信息疫情,了解COVID-19信息疫情的性质和特征至关重要,因为它不仅会导致个人认知改变和行为转变,如采取非理性的预防行动,还会对公共安全和健康构成紧迫威胁。在本研究中,我们基于第一修正案理论,整合文本和网络分析,并采用三管齐下的方法来更深入地理解COVID-19信息疫情。第一管使用潜在狄利克雷分配(LDA)来识别COVID-19假新闻和真实新闻中出现的主题和关键主题。第二管比较和对比假新闻和真实新闻中的不同情感。第三管使用网络分析来理解COVID-19真实新闻和假新闻中嵌入的各种面向网络的特征,如页面排名算法、中介中心性、离心率和接近中心性。本研究通过为应对COVID-19信息疫情的假新闻检测和推荐系统的设计与开发提供有力指导,对构建下一代可信技术具有重要意义。此外,基于我们的研究结果,我们提供了针对应对COVID-19信息疫情的直接和长期威胁的可操作的系统重点指导方针。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ca/8627595/f09a502fda2a/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验