Suppr超能文献

基于教学优化算法的PID多目标整定与性能评估

Multiobjective Tuning and Performance Assessment of PID Using Teaching-Learning-Based Optimization.

作者信息

Zhang Wei, Dong He, Xu Yunlang, Cao Di, Li Xiaoping

机构信息

State Key Laboratory of Digital Manufacturing Equipment & Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China.

出版信息

ACS Omega. 2021 Nov 16;6(47):31765-31774. doi: 10.1021/acsomega.1c04428. eCollection 2021 Nov 30.

Abstract

There have been many studies on the optimal tuning and control performance assessment (CPA) of the PID controller. In the optimal tuning, the trade-off between the setpoint tracking and the disturbance rejection performance is a challenge. Minimum output variance (MOV) is very widely used as a benchmark for CPA of PID, but it is difficult to be observed due to the non-convex optimization problem. In this paper, a new multiobjective function, considering both the OV in the CPA problem and integral of absolute error, is proposed to tune PID for this trade-off. The CPA-related non-convex problem and tuning-related multiobjective problem are solved by teaching-learning-based optimization, which guarantees a tighter lower bound for MOV due to the excellent capability of local optima avoidance and has higher computational efficiency due to the low complexity. The numerical examples of CPA problems show that the algorithm can generate better MOV than existing methods with less calculation time. The relationship between the weight of the multiobjective function and the performance, including setpoint tracking, stochastic and step disturbance rejection, is revealed by simulation results of the tuning method applied to two temperature control systems. The proper adjustment of the weight with a multistage strategy can achieve the trade-off to obtain excellent setpoint tracking performance in the initial stage and satisfying disturbance rejection performance in the steady stage.

摘要

关于PID控制器的最优整定和控制性能评估(CPA),已经有许多研究。在最优整定中,设定值跟踪和干扰抑制性能之间的权衡是一个挑战。最小输出方差(MOV)作为PID控制器CPA的基准被广泛使用,但由于非凸优化问题,它很难被观测到。本文提出了一种新的多目标函数,该函数同时考虑了CPA问题中的输出方差和绝对误差积分,用于在这种权衡中整定PID。通过基于教与学的优化方法解决了与CPA相关的非凸问题和与整定相关的多目标问题,该方法由于具有出色的避免局部最优能力,保证了MOV的更紧下界,并且由于低复杂度而具有更高的计算效率。CPA问题的数值例子表明,该算法能够以更少的计算时间产生比现有方法更好的MOV。通过将整定方法应用于两个温度控制系统的仿真结果,揭示了多目标函数的权重与性能(包括设定值跟踪、随机和阶跃干扰抑制)之间的关系。采用多阶段策略对权重进行适当调整,可以实现权衡,在初始阶段获得出色的设定值跟踪性能,在稳定阶段获得令人满意的干扰抑制性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e505/8638005/b28126e46684/ao1c04428_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验