Suppr超能文献

WalR-WalK 信号通路通过控制枯草芽孢杆菌中的肽聚糖脱乙酰酶 PdaC 来调节 CwlO 和 LytE 的活性。

The WalR-WalK Signaling Pathway Modulates the Activities of both CwlO and LytE through Control of the Peptidoglycan Deacetylase PdaC in Bacillus subtilis.

机构信息

Department of Microbiology, Harvard Medical Schoolgrid.471403.5, Boston, Massachusetts, USA.

Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA.

出版信息

J Bacteriol. 2022 Feb 15;204(2):e0053321. doi: 10.1128/JB.00533-21. Epub 2021 Dec 6.

Abstract

The WalR-WalK two component signaling system in Bacillus subtilis functions in the homeostatic control of the peptidoglycan (PG) hydrolases LytE and CwlO that are required for cell growth. When the activities of these enzymes are low, WalR activates transcription of and and represses transcription of , a secreted inhibitor of LytE. Conversely, when PG hydrolase activity is too high, WalR-dependent expression of and is reduced and is derepressed. In a screen for additional factors that regulate this signaling pathway, we discovered that overexpression of the membrane-anchored PG deacetylase PdaC increases WalR-dependent gene expression. We show that increased expression of PdaC, but not catalytic mutants, prevents cell wall cleavage by both LytE and CwlO, explaining the WalR activation. Importantly, the gene, like , is repressed by active WalR. We propose that derepression of when PG hydrolase activity is too high results in modification of the membrane-proximal layers of the PG, protecting the wall from excessive cleavage by the membrane-tethered CwlO. Thus, the WalR-WalK system homeostatically controls the levels and activities of both elongation-specific cell wall hydrolases. Bacterial growth and division requires a delicate balance between the synthesis and remodeling of the cell wall exoskeleton. How bacteria regulate the potentially autolytic enzymes that remodel the cell wall peptidoglycan remains incompletely understood. Here, we provide evidence that the broadly conserved WalR-WalK two-component signaling system homeostatically controls both the levels and activities of two cell wall hydrolases that are critical for cell growth.

摘要

枯草芽孢杆菌中的 WalR-WalK 双组分信号系统在肽聚糖 (PG) 水解酶 LytE 和 CwlO 的动态平衡控制中起作用,这两种酶对于细胞生长是必需的。当这些酶的活性较低时,WalR 激活 和 的转录,并抑制 LytE 的分泌抑制剂 的转录。相反,当 PG 水解酶活性过高时,WalR 依赖性的 和 的表达减少, 被解除抑制。在筛选调控该信号通路的其他因子的过程中,我们发现膜锚定 PG 脱乙酰酶 PdaC 的过表达增加了 WalR 依赖性基因表达。我们表明,PdaC 的表达增加(而非催化突变体)可防止 LytE 和 CwlO 对细胞壁的切割,从而解释了 WalR 的激活。重要的是, 基因与 一样,被活性 WalR 抑制。我们提出,当 PG 水解酶活性过高时, 基因的去抑制导致 PG 膜近端层的修饰,从而防止膜结合的 CwlO 对细胞壁进行过度切割。因此,WalR-WalK 系统对伸长特异性细胞壁水解酶的水平和活性进行动态控制。细菌的生长和分裂需要细胞外骨骼的合成和重塑之间的精细平衡。细菌如何调节重塑细胞壁肽聚糖的潜在自溶酶仍然不完全清楚。在这里,我们提供的证据表明,广泛保守的 WalR-WalK 双组分信号系统对两种细胞壁水解酶的水平和活性进行动态控制,这两种酶对于细胞生长是至关重要的。

相似文献

4
Deletion of the cell wall peptidoglycan hydrolase gene cwlO or lytE severely impairs transformation efficiency in Bacillus subtilis.
J Gen Appl Microbiol. 2018 Jul 23;64(3):139-144. doi: 10.2323/jgam.2017.09.002. Epub 2018 Mar 19.
5
FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis.
Mol Microbiol. 2013 Sep;89(6):1069-83. doi: 10.1111/mmi.12330. Epub 2013 Aug 1.
6
SweC and SweD are essential co-factors of the FtsEX-CwlO cell wall hydrolase complex in Bacillus subtilis.
PLoS Genet. 2019 Aug 22;15(8):e1008296. doi: 10.1371/journal.pgen.1008296. eCollection 2019 Aug.
9
Essentiality of WalRK for growth in Bacillus subtilis and its role during heat stress.
Microbiology (Reading). 2018 Apr;164(4):670-684. doi: 10.1099/mic.0.000625. Epub 2018 Feb 20.
10
Digestion of peptidoglycan near the cross-link is necessary for the growth of Bacillus subtilis.
Microbiology (Reading). 2018 Mar;164(3):299-307. doi: 10.1099/mic.0.000614. Epub 2018 Jan 25.

引用本文的文献

1
A novel peptidoglycan deacetylase modulates daughter cell separation in E. coli.
PLoS Genet. 2025 Sep 5;21(9):e1011626. doi: 10.1371/journal.pgen.1011626. eCollection 2025 Sep.
2
ComK-induced cell death is reversed by upregulating the SigB or Spx pathway in .
Microbiol Spectr. 2025 Sep 2;13(9):e0161225. doi: 10.1128/spectrum.01612-25. Epub 2025 Aug 7.
4
Synthetic Cation Transporters Eradicate Drug-Resistant , Persisters, and Biofilms.
JACS Au. 2025 Feb 14;5(3):1328-1339. doi: 10.1021/jacsau.4c01198. eCollection 2025 Mar 24.
5
Evidence that glycopolymer transferases promote peptidoglycan hydrolysis in .
bioRxiv. 2025 Mar 11:2025.02.26.640348. doi: 10.1101/2025.02.26.640348.
6
A novel peptidoglycan deacetylase modulates daughter cell separation in .
bioRxiv. 2025 Feb 19:2025.02.18.638797. doi: 10.1101/2025.02.18.638797.
7
PgpP is a broadly conserved phosphatase required for phosphatidylglycerol lipid synthesis.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2418775122. doi: 10.1073/pnas.2418775122. Epub 2025 Jan 27.
8
Evolutionary trajectories of β-lactam resistance in strains.
mBio. 2024 Dec 11;15(12):e0289724. doi: 10.1128/mbio.02897-24. Epub 2024 Nov 14.
9
The characteristics of autolysins associated with cell separation in .
J Bacteriol. 2024 Aug 22;206(8):e0013324. doi: 10.1128/jb.00133-24. Epub 2024 Jul 16.
10
Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis.
Annu Rev Microbiol. 2024 Nov;78(1):83-102. doi: 10.1146/annurev-micro-041522-091507. Epub 2024 Nov 7.

本文引用的文献

1
Growth and Division of the Peptidoglycan Matrix.
Annu Rev Microbiol. 2021 Oct 8;75:315-336. doi: 10.1146/annurev-micro-020518-120056. Epub 2021 Aug 5.
4
SweC and SweD are essential co-factors of the FtsEX-CwlO cell wall hydrolase complex in Bacillus subtilis.
PLoS Genet. 2019 Aug 22;15(8):e1008296. doi: 10.1371/journal.pgen.1008296. eCollection 2019 Aug.
5
Peptidoglycan O-Acetylation as a Virulence Factor: Its Effect on Lysozyme in the Innate Immune System.
Antibiotics (Basel). 2019 Jul 18;8(3):94. doi: 10.3390/antibiotics8030094.
6
Essentiality of WalRK for growth in Bacillus subtilis and its role during heat stress.
Microbiology (Reading). 2018 Apr;164(4):670-684. doi: 10.1099/mic.0.000625. Epub 2018 Feb 20.
7
Stimulation of PgdA-dependent peptidoglycan N-deacetylation by GpsB-PBP A1 in Listeria monocytogenes.
Mol Microbiol. 2018 Feb;107(4):472-487. doi: 10.1111/mmi.13893. Epub 2017 Dec 22.
9
Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis.
Cell Syst. 2017 Mar 22;4(3):291-305.e7. doi: 10.1016/j.cels.2016.12.013. Epub 2017 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验