Suppr超能文献

未经治疗的软组织肉瘤的自然生长速度:基于维度的影像学分析。

Natural speed of growth of untreated soft-tissue sarcomas: A dimension-based imaging analysis.

机构信息

Department of Oncologic Imaging, Bergonié Institut, Regional Comprehensive Cancer Center of Bordeaux, F-33076 Bordeaux, France; University of Bordeaux, F-33000 Bordeaux, France; Models in Oncology (MONC) Team, INRIA Bordeaux Sud-Ouest, CNRS, UMR 5251, F-33405 Talence, France.

Department of Oncologic Imaging, Bergonié Institut, Regional Comprehensive Cancer Center of Bordeaux, F-33076 Bordeaux, France.

出版信息

Eur J Radiol. 2022 Jan;146:110082. doi: 10.1016/j.ejrad.2021.110082. Epub 2021 Dec 1.

Abstract

PURPOSE

The interval from first symptoms to diagnosis, staging and referral to reference center can last months for soft-tissue sarcoma (STS) patients. Meanwhile, patients can undergo different imaging that capture the 'natural' tumor changes, before medical intervention. Aim was to depict these 'natural' dimensional variations and to correlate them with patients' outcome.

METHODS

Single-center retrospective study including all consecutive adults with newly-diagnosed STS, ≥2 pre-treatment imaging (CT-scan or MRI) on the tumor (Exam-0 and Exam-1), and managed in reference center between 2007 and 2018. Longest diameter (LD) and volume were calculated on both examinations to obtain the naïve dimensional growth before any intervention. SARCULATOR nomogram was applied on data at Exam-0 and Exam-1. Correlations with overall, metastatic and local relapse-free survivals (OS, MFS and LFS), and with pre-treatment pathological features were performed.

RESULTS

137 patients were included (median age: 65 years). Average naïve growth was +39.4% in LD and +503% in volume during an average Exam-0-to-Exam-1 interval of 130 days. The 10-year distant metastasis and OS predictions were different at Exam-0 and Exam-1 (P < 0.0001 for both). All the changes in radiological measurements significantly correlated with pre-treatment number of mitosis, grade and complex genomic (P-value range: <0.0001-0.0481). Multivariate Cox modeling identified the relative change in LD/month and absolute change in LD/month as independent predictors for OS and LFS, respectively (P = 0.0003 and 0.0001, respectively).

CONCLUSION

When available, the natural speed of growth on pre-treatment imaging should be evaluated to improve the estimation of pre-treatment histological grade and patients' OS and LFS.

摘要

目的

软组织肉瘤(STS)患者从出现症状到诊断、分期和转诊至参考中心可能需要数月时间。在此期间,患者可能会接受不同的影像学检查,以捕捉肿瘤的“自然”变化,然后再进行医学干预。本研究旨在描述这些“自然”的肿瘤尺寸变化,并将其与患者的预后相关联。

方法

这是一项单中心回顾性研究,纳入了 2007 年至 2018 年间在参考中心接受治疗的所有新诊断为 STS 的成年患者,这些患者至少接受了 2 次肿瘤的术前影像学检查(CT 扫描或 MRI)(检查 0 和检查 1)。在这两次检查中,均测量了最长直径(LD)和体积,以获得任何干预前的初始肿瘤尺寸变化。在检查 0 和检查 1 时,应用 SARCULATOR 列线图对数据进行分析。并对其与总生存(OS)、远处转移生存(MFS)和局部无复发生存(LFS),以及与术前病理特征的相关性进行了分析。

结果

共纳入 137 例患者(中位年龄:65 岁)。在检查 0 到检查 1 的平均 130 天间隔内,LD 的平均初始增长率为 39.4%,体积的平均初始增长率为 503%。在检查 0 和检查 1 时,10 年远处转移和 OS 的预测结果均不同(均 P<0.0001)。所有影像学测量的变化均与术前有丝分裂数、分级和复杂基因组显著相关(P 值范围:<0.0001-0.0481)。多变量 Cox 模型分析确定,LD 每月的相对变化和 LD 每月的绝对变化分别是 OS 和 LFS 的独立预测因素(P=0.0003 和 0.0001)。

结论

在有条件的情况下,应评估术前影像学上肿瘤的自然生长速度,以提高对术前组织学分级和患者 OS 和 LFS 的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验