文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于网络药理学和分子对接技术研究桂枝治疗肾病综合征的机制。

Research on the Mechanism of Guizhi to Treat Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking Technology.

机构信息

School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

出版信息

Biomed Res Int. 2021 Nov 27;2021:8141075. doi: 10.1155/2021/8141075. eCollection 2021.


DOI:10.1155/2021/8141075
PMID:34873575
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8643239/
Abstract

OBJECTIVE: Nephrotic syndrome (NS) is a common glomerular disease caused by a variety of causes and is the second most common kidney disease. Guizhi is the key drug of Wulingsan in the treatment of NS. However, the action mechanism remains unclear. In this study, network pharmacology and molecular docking were used to explore the underlying molecular mechanism of Guizhi in treating NS. METHODS: The active components and targets of Guizhi were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Hitpick, SEA, and Swiss Target Prediction database. The targets related to NS were obtained from the DisGeNET, GeneCards, and OMIM database, and the intersected targets were obtained by Venny2.1.0. Then, active component-target network was constructed using Cytoscape software. And the protein-protein interaction (PPI) network was drawn through the String database and Cytoscape software. Next, Gene Ontology (GO) and pathway enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by DAVID database. And overall network was constructed through Cytoscape. Finally, molecular docking was conducted using Autodock Vina. RESULTS: According to the screening criteria, a total of 8 active compounds and 317 potential targets of Guizhi were chosen. Through the online database, 2125 NS-related targets were identified, and 93 overlapping targets were obtained. In active component-target network, beta-sitosterol, sitosterol, cinnamaldehyde, and peroxyergosterol were the important active components. In PPI network, VEGFA, MAPK3, SRC, PTGS2, and MAPK8 were the core targets. GO and KEGG analyses showed that the main pathways of Guizhi in treating NS involved VEGF, Toll-like receptor, and MAPK signaling pathway. In molecular docking, the active compounds of Guizhi had good affinity with the core targets. CONCLUSIONS: In this study, we preliminarily predicted the main active components, targets, and signaling pathways of Guizhi to treat NS, which could provide new ideas for further research on the protective mechanism and clinical application of Guizhi against NS.

摘要

目的:肾病综合征(NS)是一种常见的肾小球疾病,由多种原因引起,是第二大常见的肾脏疾病。桂枝是治疗 NS 的五苓散的关键药物。然而,其作用机制尚不清楚。本研究采用网络药理学和分子对接技术探讨桂枝治疗 NS 的潜在分子机制。

方法:通过中药系统药理学数据库和分析平台(TCMSP)、Hitpick、SEA 和 Swiss Target Prediction 数据库筛选桂枝的活性成分和靶点。从 DisGeNET、GeneCards 和 OMIM 数据库中获取与 NS 相关的靶点,并通过 Venny2.1.0 获得交集靶点。然后,使用 Cytoscape 软件构建活性成分-靶点网络。通过 String 数据库和 Cytoscape 软件绘制蛋白质-蛋白质相互作用(PPI)网络。接下来,通过 DAVID 数据库进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。并通过 Cytoscape 构建整体网络。最后,使用 Autodock Vina 进行分子对接。

结果:根据筛选标准,共选择了 8 种活性化合物和 317 个潜在的桂枝靶点。通过在线数据库,共确定了 2125 个 NS 相关靶点,获得了 93 个重叠靶点。在活性成分-靶点网络中,β-谷甾醇、谷甾醇、肉桂醛和过氧麦角甾醇是重要的活性成分。在 PPI 网络中,VEGFA、MAPK3、SRC、PTGS2 和 MAPK8 是核心靶点。GO 和 KEGG 分析表明,桂枝治疗 NS 的主要途径涉及 VEGF、Toll 样受体和 MAPK 信号通路。在分子对接中,桂枝的活性化合物与核心靶点具有良好的亲和力。

结论:本研究初步预测了桂枝治疗 NS 的主要活性成分、靶点和信号通路,可为进一步研究桂枝对 NS 的保护机制和临床应用提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/4538615286f9/BMRI2021-8141075.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/e02428b57805/BMRI2021-8141075.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/855a93fc4760/BMRI2021-8141075.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/5b7b1e08ff1a/BMRI2021-8141075.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/a0d6d708abd8/BMRI2021-8141075.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/8d61c1d1f627/BMRI2021-8141075.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/1829137a15ce/BMRI2021-8141075.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/1d8cbac2d0aa/BMRI2021-8141075.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/4538615286f9/BMRI2021-8141075.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/e02428b57805/BMRI2021-8141075.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/855a93fc4760/BMRI2021-8141075.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/5b7b1e08ff1a/BMRI2021-8141075.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/a0d6d708abd8/BMRI2021-8141075.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/8d61c1d1f627/BMRI2021-8141075.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/1829137a15ce/BMRI2021-8141075.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/1d8cbac2d0aa/BMRI2021-8141075.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d110/8643239/4538615286f9/BMRI2021-8141075.008.jpg

相似文献

[1]
Research on the Mechanism of Guizhi to Treat Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking Technology.

Biomed Res Int. 2021

[2]
Potential Molecular Mechanisms of Ephedra Herb in the Treatment of Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking.

Biomed Res Int. 2022

[3]
Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology.

Biomed Res Int. 2021

[4]
Network Pharmacology and Molecular Docking Validation to Explore the Pharmacological Mechanism of Zhuling Decoction against Nephrotic Syndrome.

Curr Pharm Des. 2024

[5]
Network Pharmacology-Based and Molecular Docking-Based Analysis of Suanzaoren Decoction for the Treatment of Parkinson's Disease with Sleep Disorder.

Biomed Res Int. 2021

[6]
Research on the Regulatory Mechanism of Ginseng on the Tumor Microenvironment of Colorectal Cancer based on Network Pharmacology and Bioinformatics Validation.

Curr Comput Aided Drug Des. 2024

[7]
Exploring the Molecular Mechanism of Action of Yinchen Wuling Powder for the Treatment of Hyperlipidemia, Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation.

Biomed Res Int. 2021

[8]
Exploring the Mechanisms of Self-made Kuiyu Pingchang Recipe for the Treatment of Ulcerative Colitis and Irritable Bowel Syndrome using a Network Pharmacology-based Approach and Molecular Docking.

Curr Comput Aided Drug Des. 2024

[9]
Network Pharmacology and Molecular Docking to Unveil the Mechanism of Shudihuang against Amyotrophic Lateral Sclerosis.

Curr Pharm Des. 2023

[10]
Study on the molecular mechanism of Guizhi Jia Shaoyao decoction for the treatment of knee osteoarthritis by utilizing network pharmacology and molecular docking technology.

Allergol Immunopathol (Madr). 2021

引用本文的文献

[1]
Computational pharmacology-based molecular mechanism investigation of cinnamaldehyde intervention in nephrotic syndrome.

Naunyn Schmiedebergs Arch Pharmacol. 2025-3-11

[2]
Huoxiang Zhengqi Oral Liquid Attenuates LPS-Induced Acute Lung Injury by Modulating Short-Chain Fatty Acid Levels and TLR4/NF-B p65 Pathway.

Biomed Res Int. 2023

本文引用的文献

[1]
Interpreting the Molecular Mechanisms of Yinchenhao Decoction on Hepatocellular Carcinoma through Absorbed Components Based on Network Pharmacology.

Biomed Res Int. 2021-5-19

[2]
Podocyte-derived microparticles promote proximal tubule fibrotic signaling via p38 MAPK and CD36.

J Extracell Vesicles. 2018-2-2

[3]
Perturbation of Akt Signaling, Mitochondrial Potential, and ADP/ATP Ratio in Acidosis-Challenged Rat Cortical Astrocytes.

J Cell Biochem. 2017-5

[4]
Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains.

Oncogenesis. 2016-5-30

[5]
HISTOPATHOLOGICAL PATTERNS IN PAEDIATRIC IDIOPATHIC STEROID RESISTANT NEPHROTIC SYNDROME.

J Ayub Med Coll Abbottabad. 2015

[6]
Vascular endothelial cell Toll-like receptor pathways in sepsis.

Innate Immun. 2015-11

[7]
Cinnamaldehyde prevents endothelial dysfunction induced by high glucose by activating Nrf2.

Cell Physiol Biochem. 2015

[8]
Cinnamic aldehyde treatment alleviates chronic unexpected stress-induced depressive-like behaviors via targeting cyclooxygenase-2 in mid-aged rats.

J Ethnopharmacol. 2015-3-13

[9]
Dehydrocostuslactone inhibits LPS-induced inflammation by p38MAPK-dependent induction of hemeoxygenase-1 in vitro and improves survival of mice in CLP-induced sepsis in vivo.

Int Immunopharmacol. 2014-10

[10]
c-Src drives intestinal regeneration and transformation.

EMBO J. 2014-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索