Barioni Ana Elisa D, de Aguiar Marcus A M
Instituto de Física "Gleb Wataghin," Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, São Paulo, Brazil.
Chaos. 2021 Nov;31(11):113141. doi: 10.1063/5.0069350.
Kuramoto's original model describes the dynamics and synchronization behavior of a set of interacting oscillators represented by their phases. The system can also be pictured as a set of particles moving on a circle in two dimensions, which allows a direct generalization to particles moving on the surface of higher dimensional spheres. One of the key features of the 2D system is the presence of a continuous phase transition to synchronization as the coupling intensity increases. Ott and Antonsen proposed an ansatz for the distribution of oscillators that allowed them to describe the dynamics of the order parameter with a single differential equation. A similar ansatz was later proposed for the D-dimensional model by using the same functional form of the 2D ansatz and adjusting its parameters. In this article, we develop a constructive method to find the ansatz, similarly to the procedure used in 2D. The method is based on our previous work for the 3D Kuramoto model where the ansatz was constructed using the spherical harmonics decomposition of the distribution function. In the case of motion in a D-dimensional sphere, the ansatz is based on the hyperspherical harmonics decomposition. Our result differs from the previously proposed ansatz and provides a simpler and more direct connection between the order parameter and the ansatz.
仓本的原始模型描述了一组由相位表示的相互作用振子的动力学和同步行为。该系统也可以被看作是一组在二维空间中沿圆周运动的粒子,这使得可以直接推广到在高维球体表面运动的粒子。二维系统的一个关键特征是,随着耦合强度的增加,会出现向同步的连续相变。奥特和安东森为振子的分布提出了一个假设,这使他们能够用一个单一的微分方程来描述序参量的动力学。后来,通过使用二维假设的相同函数形式并调整其参数,为D维模型提出了类似的假设。在本文中,我们开发了一种构造性方法来找到这个假设,类似于在二维中使用的过程。该方法基于我们之前对三维仓本模型的工作,在那里假设是使用分布函数的球谐分解构建的。在D维球体中运动的情况下,假设基于超球谐分解。我们的结果与之前提出的假设不同,并在序参量和假设之间提供了更简单、更直接的联系。