School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China.
Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany.
Nano Lett. 2021 Dec 22;21(24):10361-10367. doi: 10.1021/acs.nanolett.1c03643. Epub 2021 Dec 9.
Whereas capillarity controls fluid dynamics at submillimeter scale and elasticity determines the mechanics of rigid solids, their coupling governs elastocapillary deformations on soft solids. Here, we directly probed the deformations on soft substrates induced by sessile nanodroplets. The wetting ridge created around the contact line and the dimple formed underneath the nanodroplet were imaged with a high spatial resolution using atomic force microscopy. The ridge height nonmonotonically depends on the substrate stiffness, and the dimple depth nonlinearly depends on the droplet size. The capillarity of the substrate overcomes the elasticity of the substrate in dominating the deformations when the elastocapillary length is approximately larger than the droplet contact radius, showing an experimental observation of the elasticity-to-capillarity transition. This study provides an experimental approach to investigate nanoscale elastocapillarity, and the insights have the potential to kick-off future work on the fundamentals of solid mechanics.
虽然毛细作用控制亚毫米尺度的流体动力学,弹性决定刚性固体的力学性质,但它们的结合控制软固体的弹毛细变形。在这里,我们直接探测了固着纳米液滴引起的软基底的变形。使用原子力显微镜以高空间分辨率成像接触线周围形成的润湿脊和纳米液滴下形成的凹陷。脊高与基底刚度呈非单调关系,凹坑深度与液滴尺寸呈非线性关系。当弹毛细长度大约大于液滴接触半径时,基底的毛细作用克服了基底的弹性,从而主导变形,表现出弹性-毛细作用转变的实验观察。本研究提供了一种研究纳米尺度弹毛细作用的实验方法,为固体力学基础的进一步研究提供了新的思路。