Suppr超能文献

基于连接组学的模型预测大学生个体的精神病态特征。

Connectome-based model predicts individual psychopathic traits in college students.

机构信息

Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China.

School of Marxism, Zhejiang Yuexiu University, Shaoxing, China.

出版信息

Neurosci Lett. 2022 Jan 19;769:136387. doi: 10.1016/j.neulet.2021.136387. Epub 2021 Dec 6.

Abstract

BACKGROUND

Psychopathic traits have been suggested to increase the risk of violations of socio-moral norms. Previous studies revealed that abnormal neural signatures are associated with elevated psychopathic traits; however, whether the intrinsic network architecture can predict psychopathic traits at the individual level remains unclear.

METHODS

The present study utilized connectome-based predictive modeling (CPM) to investigate whether whole-brain resting-state functional connectivity (RSFC) can predict psychopathic traits in the general population. Resting-state fMRI data were collected from 84 college students with varying psychopathic traits measured by the Levenson Self-Report Psychopathy Scale (LSRP).

RESULTS

Functional connections that were negatively correlated with psychopathic traits predicted individual differences in total LSRP and secondary psychopathy score but not primary score. Particularly, nodes with the most connections in the predictive connectome anchored in the prefrontal cortex (e.g., anterior prefrontal cortex and orbitofrontal cortex) and limbic system (e.g., anterior cingulate cortex and insula). In addition, the connections between the occipital network (OCCN) and cingulo-opercular network (CON) served as a significant predictive connectome for total LSRP and secondary psychopathy score.

CONCLUSION

CPM constituted by whole-brain RSFC significantly predicted psychopathic traits individually in the general population. The brain areas including the prefrontal cortex and limbic system and large-scale networks including the CON and OCCN play special roles in the predictive model-possibly reflecting atypical cognitive control and affective processing for individuals with elevated psychopathic traits. These findings may facilitate detection and potential intervention of individuals with maladaptive psychopathic tendency.

摘要

背景

心理变态特征被认为会增加违反社会道德规范的风险。先前的研究表明,异常的神经特征与心理变态特征升高有关;然而,内在网络结构是否可以在个体水平上预测心理变态特征尚不清楚。

方法

本研究利用连接组预测建模(CPM)来研究全脑静息态功能连接(RSFC)是否可以预测普通人群中的心理变态特征。使用 Levenson 自我报告心理变态量表(LSRP)测量了 84 名具有不同心理变态特征的大学生的静息态 fMRI 数据。

结果

与心理变态特征呈负相关的功能连接可以预测 LSRP 总分和次级心理变态得分的个体差异,但不能预测主要得分。特别是,预测连接组中连接最多的节点位于前额叶皮层(如前前额叶皮层和眶额皮层)和边缘系统(如前扣带皮层和岛叶)。此外,枕叶网络(OCCN)和扣带旁网络(CON)之间的连接是 LSRP 总分和次级心理变态得分的重要预测连接组。

结论

由全脑 RSFC 组成的 CPM 显著预测了普通人群中个体的心理变态特征。包括前额叶皮层和边缘系统在内的大脑区域以及包括 CON 和 OCCN 在内的大规模网络在预测模型中起着特殊作用,这可能反映了具有升高心理变态特征的个体认知控制和情感处理的异常。这些发现可能有助于检测和潜在干预具有适应不良心理变态倾向的个体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验