文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脉动双向气溶胶流对鼻内嗅觉区域气溶胶输送的影响:一项针对个体患者的计算研究。

Pulsatile Bi-Directional Aerosol Flow Affects Aerosol Delivery to the Intranasal Olfactory Region: A Patient-Specific Computational Study.

作者信息

Farnoud Ali, Tofighian Hesam, Baumann Ingo, Martin Andrew R, Rashidi Mohammad M, Menden Micheal P, Schmid Otmar

机构信息

Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.

Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany.

出版信息

Front Pharmacol. 2021 Nov 23;12:746420. doi: 10.3389/fphar.2021.746420. eCollection 2021.


DOI:10.3389/fphar.2021.746420
PMID:34887754
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8650014/
Abstract

The nasal olfactory region is a potential route for non-invasive delivery of drugs directly from the nasal epithelium to the brain, bypassing the often impermeable blood-brain barrier. However, efficient aerosol delivery to the olfactory region is challenging due to its location in the nose. Here we explore aerosol delivery with bi-directional pulsatile flow conditions for targeted drug delivery to the olfactory region using a computational fluid dynamics (CFD) model on the patient-specific nasal geometry. Aerosols with aerodynamic diameter of 1 µm, which is large enough for delivery of large enough drug doses and yet potentially small enough for non-inertial aerosol deposition due to, e.g., particle diffusion and flow oscillations, is inhaled for 1.98 s through one nostril and exhaled through the other one. The bi-directional aerosol delivery with steady flow rate of 4 L/min results in deposition efficiencies (DEs) of 50.9 and 0.48% in the nasal cavity and olfactory region, respectively. Pulsatile flow with average flow rate of 4 L/min (frequency: 45 Hz) reduces these values to 34.4 and 0.12%, respectively, and it mitigates the non-uniformity of right-left deposition in both the cavity (from 1.77- to 1.33-fold) and the olfactory region (from 624- to 53.2-fold). The average drug dose deposited in the nasal cavity and the olfactory epithelium region is very similar in the right nasal cavity independent of pulsation conditions (inhalation side). In contrast, the local aerosol dose in the olfactory region of the left side is at least 100-fold lower than that in the nasal cavity independent of pulsation condition. Hence, while pulsatile flow reduces the right-left (inhalation-exhalation) imbalance, it is not able to overcome it. However, the inhalation side (even with pulsation) allows for relatively high olfactory epithelium drug doses per area reaching the same level as in the total nasal cavity. Due to the relatively low drug deposition in olfactory region on the exhalation side, this allows either very efficient targeting of the inhalation side, or uniform drug delivery by performing bidirectional flow first from the one and then from the other side of the nose.

摘要

鼻腔嗅觉区域是药物从鼻上皮直接非侵入性输送到大脑的潜在途径,可绕过通常具有屏障作用的血脑屏障。然而,由于其在鼻腔中的位置,将气雾剂有效输送到嗅觉区域具有挑战性。在此,我们使用基于患者特异性鼻腔几何结构的计算流体动力学(CFD)模型,探索在双向脉动流条件下进行气雾剂输送,以实现向嗅觉区域的靶向药物输送。吸入空气动力学直径为1微米的气雾剂,其大小足以输送足够大的药物剂量,同时又可能小到足以因颗粒扩散和气流振荡等原因实现非惯性气溶胶沉积,通过一个鼻孔吸入1.98秒,然后通过另一个鼻孔呼出。稳定流速为4升/分钟的双向气雾剂输送在鼻腔和嗅觉区域的沉积效率(DE)分别为50.9%和0.48%。平均流速为4升/分钟(频率:45赫兹)的脉动流将这些值分别降至34.4%和0.12%,并减轻了鼻腔(从1.77倍降至1.33倍)和嗅觉区域(从624倍降至53.2倍)左右两侧沉积的不均匀性。在右侧鼻腔中,无论脉动条件如何(吸入侧),沉积在鼻腔和嗅觉上皮区域的平均药物剂量非常相似。相比之下,无论脉动条件如何,左侧嗅觉区域的局部气雾剂剂量比鼻腔中的至少低100倍。因此,虽然脉动流减少了左右(吸入 - 呼出)不平衡,但无法克服这种不平衡。然而,吸入侧(即使有脉动)每单位面积的嗅觉上皮药物剂量相对较高,可达到与整个鼻腔相同的水平。由于呼气侧嗅觉区域的药物沉积相对较低,这使得要么能够非常有效地靶向吸入侧,要么通过先从鼻子的一侧然后从另一侧进行双向流动来实现均匀的药物输送。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/6149cbd71c03/fphar-12-746420-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/2b8bd4f794a4/fphar-12-746420-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/2e5cadff0fc4/fphar-12-746420-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/41b589d205a1/fphar-12-746420-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/f190da62e209/fphar-12-746420-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/e192d4d0d201/fphar-12-746420-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/d8111013175b/fphar-12-746420-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/ac105ff6f60d/fphar-12-746420-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/5d9b8a48f90f/fphar-12-746420-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/0f99d2b99c7e/fphar-12-746420-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/72a67e2f5051/fphar-12-746420-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/aec006973ecd/fphar-12-746420-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/39fb3a7314b9/fphar-12-746420-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/6149cbd71c03/fphar-12-746420-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/2b8bd4f794a4/fphar-12-746420-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/2e5cadff0fc4/fphar-12-746420-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/41b589d205a1/fphar-12-746420-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/f190da62e209/fphar-12-746420-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/e192d4d0d201/fphar-12-746420-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/d8111013175b/fphar-12-746420-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/ac105ff6f60d/fphar-12-746420-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/5d9b8a48f90f/fphar-12-746420-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/0f99d2b99c7e/fphar-12-746420-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/72a67e2f5051/fphar-12-746420-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/aec006973ecd/fphar-12-746420-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/39fb3a7314b9/fphar-12-746420-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266e/8650014/6149cbd71c03/fphar-12-746420-g013.jpg

相似文献

[1]
Pulsatile Bi-Directional Aerosol Flow Affects Aerosol Delivery to the Intranasal Olfactory Region: A Patient-Specific Computational Study.

Front Pharmacol. 2021-11-23

[2]
Numerical Comparison of Nasal Aerosol Administration Systems for Efficient Nose-to-Brain Drug Delivery.

Pharm Res. 2017-12-29

[3]
Bi-directional nasal drug delivery systems: A scoping review of nasal particle deposition patterns and clinical application.

Laryngoscope Investig Otolaryngol. 2023-11-22

[4]
Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling.

Eur J Pharm Sci. 2018-3-27

[5]
Olfactory Targeting of Microparticles Through Inhalation and Bi-directional Airflow: Effect of Particle Size and Nasal Anatomy.

J Aerosol Med Pulm Drug Deliv. 2020-10

[6]
Nasal and Olfactory Deposition with Normal and Bidirectional Intranasal Delivery Techniques: In Vitro Tests and Numerical Simulations.

J Aerosol Med Pulm Drug Deliv. 2017-4

[7]
CFD Guided Optimization of Nose-to-Lung Aerosol Delivery in Adults: Effects of Inhalation Waveforms and Synchronized Aerosol Delivery.

Pharm Res. 2020-9-24

[8]
High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.

J Aerosol Med Pulm Drug Deliv. 2018-12-15

[9]
Numerical and Machine Learning Analysis of the Parameters Affecting the Regionally Delivered Nasal Dose of Nano- and Micro-Sized Aerosolized Drugs.

Pharmaceuticals (Basel). 2023-1-6

[10]
Simulation of patient-specific bi-directional pulsating nasal aerosol dispersion and deposition with clockwise 45° and 90° nosepieces.

Comput Biol Med. 2020-8

引用本文的文献

[1]
Intranasal and Pulmonary Lipid Nanoparticles for Gene Delivery: Turning Challenges into Opportunities.

Int J Nanomedicine. 2025-6-23

[2]
Leveraging Numerical Simulation Technology to Advance Drug Preparation: A Comprehensive Review of Application Scenarios and Cases.

Pharmaceutics. 2024-10-7

[3]
Bi-directional nasal drug delivery systems: A scoping review of nasal particle deposition patterns and clinical application.

Laryngoscope Investig Otolaryngol. 2023-11-22

[4]
Computational, and Models for Nose-to-Brain Drug Delivery Studies.

Biomedicines. 2023-8-4

[5]
Numerical and Experimental Analysis of Drug Inhalation in Realistic Human Upper Airway Model.

Pharmaceuticals (Basel). 2023-3-7

[6]
Numerical and Machine Learning Analysis of the Parameters Affecting the Regionally Delivered Nasal Dose of Nano- and Micro-Sized Aerosolized Drugs.

Pharmaceuticals (Basel). 2023-1-6

[7]
Intranasal Administration of a TRAIL Neutralizing Monoclonal Antibody Adsorbed in PLGA Nanoparticles and NLC Nanosystems: An In Vivo Study on a Mouse Model of Alzheimer's Disease.

Biomedicines. 2022-4-23

[8]
Xenon-Enhanced Dynamic Dual-Energy CT Is Able to Quantify Sinus Ventilation Using Laminar and Pulsating Air-/Gas Flow Before and After Surgery: A Pilot Study in a Cadaver Model.

Front Allergy. 2022-2-16

本文引用的文献

[1]
Effect of swirling flow and particle-release pattern on drug delivery to human tracheobronchial airways.

Biomech Model Mechanobiol. 2021-12

[2]
Flow Structure and Particle Deposition Analyses for Optimization of a Pressurized Metered Dose Inhaler (pMDI) in a Model of Tracheobronchial Airway.

Eur J Pharm Sci. 2021-9-1

[3]
Simulation of patient-specific bi-directional pulsating nasal aerosol dispersion and deposition with clockwise 45° and 90° nosepieces.

Comput Biol Med. 2020-8

[4]
In vitro assessment of an idealized nose for nasal spray testing: Comparison with regional deposition in realistic nasal replicas.

Int J Pharm. 2020-5-30

[5]
An in vitro evaluation of importance of airway anatomy in sub-regional nasal and paranasal drug delivery with nebulizers using three different anatomical nasal airway replicas of 2-, 5- and 50-Year old human subjects.

Int J Pharm. 2019-4-8

[6]
Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling.

Eur J Pharm Sci. 2018-3-27

[7]
Nasal and Olfactory Deposition with Normal and Bidirectional Intranasal Delivery Techniques: In Vitro Tests and Numerical Simulations.

J Aerosol Med Pulm Drug Deliv. 2017-4

[8]
A Computational Study of Nasal Spray Deposition Pattern in Four Ethnic Groups.

J Aerosol Med Pulm Drug Deliv. 2016-4

[9]
Drug delivery to paranasal sinuses using pulsating aerosols.

J Aerosol Med Pulm Drug Deliv. 2014-8

[10]
Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review.

Drug Deliv Transl Res. 2012-10-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索